
The intercept of the line with the abscissa yields 
1V. This geomehy-independent constant is 
characteristic for the specific nanohlbe under 
investigation and is typically on the order of 
several volts. Similarly, attaching nanoscopic 
conducting paiticles to the nanotubes facilitates 
measurements of their work functions. 

The methods developed here are also well 
suited to measure masses in the picogram-to- 
femtogram mass range, as demonstrated in Fig. 
4A, which shows the resonance of a carbon 
particle that is attached to the end of a nanohlbe 
(38). The mass of this particle was determined 
from the resonance ftequency of the structure 
and was found to be M = 22 -i- 6 fg (1 fg = 

10-l5 g). This value is near that calculated from 
the measured geomehyy: assuming bulk amor- 
phous carbon density--that is, M - 30 fg. This 
nanobalance method can be applied to other 
particles of similar dimensions, such as viruses. 
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An Elusive Blind-Thrust Fault 
Beneath Metropolitan Los 

Angeles 
John H. Shawl* and Peter M. ShearerZ 

Seismic reflection profiles, petroleum wells, and relocated earthquakes reveal the 
presence of an active blind-thrust fault beneath metropolitan Los Angeles. A 
segment of this fault likely caused the 1987 Whittier Narrows (magnitude 6.0) 
earthquake. Mapped sizes of other fault segments suggest that the system is 
capable of much larger (magnitude 6.5 to 7) and more destructive earthquakes. 

Damages exceeding $35 billion from the 1994 
Northridge [magnitude (M) 6.71 earthq~~ake (I); 
combined with recent evidence of larger (>M 
7) events in the geologic record (2) ,  have fo- 
cused attention on the hazards posed by thrust 
faults to ~netropolitan Los Angeles. Efforts to 
assess and mitigate these hazards are conlpli- 
cated, however, because thrust faults beneath 
the city are typically blind, meaning that they 
lie concealed beneath Earth's surface (3; 4). 
Here, we used hlgh-resolution, subsurface im- 
ages acquired by the petroleuln indushy (Fig. 1) 
and relocated seismicity to map a large blind- 
thrust system lying directly beneath the metro- 
politan area (Fig. 2). 

Many blind thrusts produce near-surface 
folds that grow during repeated earthquakes 
(3-5) in response to motions through bends in 
fault planes or above propagating fault tips. 
and their shapes reflect underlying fault ge- 
ometries and slip (6; 7). Seismic reflection 
profiles and information from oil wells reveal 
a series of these anticlines extending from 
downtown Los Angeles to the Coyote Hills 

(8--10) in northern Orange County (Fig. 2). 
These folds grew in the Quateinary while 
sedi~nents were deposited above them, yield- 
ing pattelus of defolmed strata that record 
fold growth and fault slip (11). These de- 
formed strata are particularly well imaged in 
the Santa Fe Springs anticline (Fig. 1). 

On the basis of fault-related folding theo- 
ries (11). the shape of the growth fold at 
Santa Fe Springs suggests that an underlying 
fault; which we call the Puente Hills thrust, 
dips to the north and extends upward into the 
Pliocene Fernando Formation. This fault 
shape and position are consistent with a 
north-dipping reflection beneath the anticline 
that cuts across bedding. This reflection is 
observed on more than 10 seismic profiles 
and persists through a range of processing 
steps aimed to remove noise and artifacts 
(12). Thus, we interpret this reflection as an 
image of the fault surface, caused by velocity 
and density contrasts that exist across the 
fault plane. 

Fault-plane reflections in a series of seis- 
mic profiles define an east-west-striking sur- 
face that dips about 27" to the north. We 

'Department o f  Earth and Planetary Sciences, Harvard extrapolated beyolld the linlits of the fault- 
University, Cambridge, M A  02138, USA. 'Institute o f  plane reflectioIls, fold shape, as imaged 
Geophysics and Planetary Physics, Scripps lnst i tute o f  
Oceanography, University o f  California, San Diego, La in the seislnic profiles, to predict the 
jolla, CA 92093-0225, USA. shape (6. 11) and map the fault surface (Fig. 

'To w h o m  correspondence should be addressed E- 2)- fault extends 40 km along 
mall: shaw@eps.haward.edu strike and includes three distinct geometric 
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segments, termed Los Angeles, Santa Fe 
Springs, and Coyote Hills. This fault system 
is distinct from the previously documented 
Elysian Park fault (10, 13) and thus repre- 
sents a hazard that has not been previously 
considered. 

The mapped fault surface at Santa Fe 
Springs has the same strike and dip as the 
fault that ruptured in the 1987 Whittier 
Narrows (M 6.0) earthquake (Fig. 2). The 
-25" northward dip of the Whittier Nar- 
rows mainshock, as determined by the focal 
mechanism (14) and aftershock locations 
(14, 15), agrees with the orientation of the 
Puente Hills reflector. However, the pro- 
jected reflector plane crosses the location 
of the Whittier Narrows event at a depth of 
about 12.8 km, 3 km deeper than the South- 
em California Seismograph Network 
(SCSN) catalog earthquake location and 2 
to 3 km shallower than revised estimates of 
the mainshock depth from previous studies 
(14, 15). In turn, the Whittier Narrows 
rupture surface from these studies projects 
up to relatively undeformed regions of the 
Puente Hills and central Los Angeles basin 
(4). Thus, we relocated the earthquakes 
more accurately to substantiate or eliminate 
this discrepancy. 

We applied the L1-norm, waveform 
cross-correlation approach (15) to obtain ac- 
curate locations of the Whittier Narrows 
earthquake and its aftershocks. To improve 
the accuracy of the absolute event locations, 
varticularlv in death, we accounted for three- 
dimensional velocity variations in two differ- 
ent ways: (i) We relocated the events using 
station terms (timing corrections) for SCSN 
stations derived from a spatially distributed 
set of 4800 events across southern California 
(16). These terms correct for differences in 
the shallow velocity structure beneath the 
stations. (ii) For four stations close to the 
Whittier Narrows earthquake (FLA, GVR, 
SC1, and TCC), we obtained detailed veloc- 
ity information from boreholes (Fig. 3), the 
same data used to define the fault position in 
the reflection image. We relocated the events 
using the custom profiles at these stations and 
a reference one-dimension J model at all oth- 
er stations. We forced an exact fit to the travel 
times for station FLA, the nearby station with 
the most data. 

Both methods indicate that the Whittier 
Narrows events are shallower than the lo- 
cations obtained without these corrections 
(15), which were biased downward by slow 
near-surface velocities at seismic stations 
close to the sequence. The station term 

bounds on these depth estimates are quite model. On the basis of the depths obtained 
small (0.1 to 0.3 km), but these numbers do from the two methods, we estimate that the 
not include the uncertainties in the velocity mainshock depth is 13 ? 1 km. This earth- 

AI Exxon 

Fig. 1. Migrated seismic reflection profile imaging a segment of the Puente Hills blind-thrust 
system beneath the Santa Fe Springs anticline. Interpreted fault-plane reflections, selected by 
lateral coherence (72), are highlighted in red. The subthrust fold is part of the Santa Monica 
Mountains anticlinorium, which is developed above the Elysian Park thrust system (4, 5). Qt. 
Quaternary; Tfu, Pliocene upper Fernando Formation; Tfl. Pliocene lower Fernando Formation; Tp. 
Miocene Puente Formation. Data courtesy of Texaco. An unmarked version of this figure is available 
at www.sciencemag.org/feature/data/984081.shl. 

locations place the mainshock at 12.7 km; ' 
the borehole velocity-constrained locations Fig. 2. Contour map of the Puente Hills thrust system with revised locations of the 1987 Whitticr 
place the mainshock at 1 3 . ~  km. both Narrows (M 6.0) earthquake and aftershocks. The map is overlain on a LandsatTM image (band 5). 

The inset shows the location of the 1994 Northridge (M 6.7) earthquake. SMMA, Santa Monica the locates near the center Mountains anticlinorium (5); SAF, San Andreas fault. SCSN seismograph stations: 1, TCC; 2, FLA; 3, 
the plane$ which -250 GVR; and 4, SC1. Green curves denote locations of oil and gas fields. WO-W' and W1-WZ are traces 

the north (Fig. 4). Formal statistical error of sedions shown in Figs. 1 and 4. 
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quake position is consistent within the lim- 
its of resolution with the projected position 
of the Puente Hills reflector, offering a 
compelling linkage between the Santa Fe 
fault segment and the earthquake (Fig. 4). 
This linkage implies that the Puente Hills 
fault system is active and thus warrants 
consideration as an earthquake hazard. 

The Whittier Narrows (M 6) earthquake 
ruptured only about 10% of the inferred fault 
area. Assuming that the entire fault system 
extends to the depth of the Whittier Narrows 
seismicity, the Los Angeles, Santa Fe Springs, 
and Coyote Hills fault segments would have 
areas (1 7) of 280, 260, and 300 km2, respec- 
tively. On the basis of empirical relations 
between fault rupture area and magnitude 
(It?), ruptures on these fault segments could 
generate 6.5 to 6.6 moment magnitude (M,) 

earthquakes. A much larger earthquake (M, 
7.0) could occur if the three fault segments 
ruptured simultaneously or if the fault system 
extends below the base of the Whittier Nar- 
rows seismicity. 

The record of prehistoric ruptures on 
this system is unknown. Moreover, the 
number of fault segments and the lack of 
large events in the historic record (19), 
which dates to about 1850 A.D., make it 
difficult to forecast future events. Given a 
range on fault slip rates from 0.5 to 2.0 
mmlyear (20-23) and assuming that this 
slip is released in M 6.5 to 6.6 earthquakes, 
each fault segment could rupture every 250 
to 1000 years. Multisegrnent (M, 7.0) 
earthquakes would occur less frequently, 
with a recurrence interval ranging from 500 
to 2000 years. 
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