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Electrostatic Deflections and 
Electromechanical Resonances 

of Carbon Nanotubes 
Philippe Poncharal,' Z. 1. Wang,' Daniel Uga~- te ,~  

Walt A. de ~ e e r ' "  

Static and dynamic mechanical deflections were electrically induced in canti- 
levered, multiwalled carbon nanotubes in a transmission electron microscope. 
The nanotubes were resonantly excited at the fundamental frequency and 
higher harmonics as revealed by their deflected contours, which correspond 
closely to those determined for cantilevered elastic beams. The elastic bending 
modulus as a function of diameter was found to decrease sharply (from about 
1 to 0.1 terapascals) with increasing diameter (from 8 to 40 nanometers), which 
indicates a crossover from a uniform elastic mode to an elastic mode that 
involves wavelike distortions in the nanotube. The quality factors of the res- 
onances are on the order of 500. The methods developed here have been applied 
to a nanobalance for nanoscopic particles and also to a Kelvin probe based on 
nanotubes. 

Ever since their discovery (I),  carbon nano- 
hlbes have been recognized as particularly 
important nanoscopic systems (2-9). The me- 
chanical properties of carboil nanotubes have 
been the subject of numerous studies (10- 
21). In several experimental studies, the 
Young's modulus E was found to be extreme- 
ly high, on the order of 1 TPa (12, 14, 16,21). 
Theory appears to confiim this value (1 0, 11, 
22, 23), which is on the same order as the 
elastic modulus along the basal plane of high- 
ly oriented pyrolythic graphite: Ea = 1.06 
TPa (24). Recent detem~inations of the 
Young's modulus rely primarily on rigidity 
measurements (25) and assume that the nano- 
tubes bend by uniform compression of the 
inner arc of the bent tube and uniform elon- 
gation of the outer arc, as for an isotropic rod 
(10). Those measurements either involved 

electron microscopy-based measurements of 
thermal vibration amplitudes (12) or atomic 
force microscope (AFM) measurements of 
cantilevered (16) or otherwise suspended 
(21) nanotubes. The arc-produced carbon 
nanotubes with diameters up to D = 76 nm 
were all found to be rigid, with Young's 
moduli in the terapascal range. The measure- 
ments made to date suffer somewhat from 
experimental uncertainties such as precise 
measurements of the thermal vibrational am- 
plitudes, the effect of the AFM tip on the 
nanotubes, and calibration of the AFM can- 
tilever. Furthemlore, they do not give infor- 
mation on the damping of vibrations nor on 
the shapes of stressed nanotubes. 

Here we introduce methods for investigat- 
ing properties of carbon nanotubes that may be 
extended into the mesoscopic size range. We 
used those methods on arc-produced, multi- 
walled carbon nanotubes (h4WNTs) (26). The ~, 
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(7). The wire was mounted on a small electri- 
cally insulated support so that a potential could 
be applied to it. This assembly was inserted in 
a custom-built specimen holder of the TEM in 
such a way that the fiber was about 5 to 20 pm 
away from a grounded counterelectrode. The 
specimen holder was provided with a piezo- 
driven translation stage and a micrometer-driv- 
en translation stage to accurately position the 
fiber relative to the counterelectrode. To accu- 
rately measure the length L and diameter D of 
the investigated nanokibe, the sample holder 
could be rotated about its axis so that the nano- 
kibe under investigation could be aligned per- 
pendicular to the electron beam. 

When a static potential V, was applied to the 
wire, the carbon nanotubes that protruded from 
the fiber became electrically charged and were 
attracted to the counterelectrode. The nanokibes 
that were not perpendicular to the counterelec- 
trode bent toward it (Fig. 1). We compared the 
shape of the bent nanokibe to that of a cantile- 
vered elastic beam when a force was applied to 
its tip and also to that of a beam with a uni- 
fonnly distributed force. This analysis demon- 
strated that the force exerted on the nanotube is 
essentially entirely at the tip, hence the charge 
should be located there. [This result is expected 
from classical electrostatics applied to conduct- 
ing needle-shaped conductors (28).] Further- 
more, the measured deflection is proportional to 
V: [after taking into accoullt a slight voltage 
offset (Fig. 1C)I. This is to be expected for a 
nanotube that follows Hook's la~il, because the 
force equals the product of the induced electric 
charge (proportioilal to lf5) and the electric field 
(also proportional to 1fJ. Hence, if the charge 
on the tip equals aV,, where ci is a nanokibe- 
dependent constant that depends on the geom- 
etry, and if the electric field is PVS, then the 
static force at the tip is Fs = ciPV:. Small 
deflections are proportional to F,. In the course 
of these measurements, we found that a nano- 
hlbe with D = 20 nm can be bent to a radius of 
curvature at least as small as 80 nm, after ~ilhich 
it returns to its original straight configuration, 
which indicates that such extreme bending does 
not exceed the elastic limit (14, 19). 

Application of a time (t)-dependent volt- 
age to the nanoh~bes [V(t) = lfd cos(ot)] 
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caused a time-dependent force and dynamic 
deflections (the forces are described in Eq. 2). 
Adjustment of the angular frequency o = 

21~v allowed the nanotubes to be resonantly 
excited, which caused large-amplitude de- 
flections for relatively small excitation volt- 
ages V,. For example, for the vibrations in 
Fig. 2B, V, = 100 mV and the frequency v, 
= 530 kHz. The shape of the dynamically 
deflected nanotube (which is independent of 
the details of the force distribution on the 
nanotube) corresponds to the shape predicted 
for a resonantly excited cantilevered beam. 
The frequencies are found from the following 

Fig. 1. Electron micrographs of the electrome- 
chanical deflections of a carbon nanotube. (A) 
Uncharged nanotube (V, = 0). (8) Charged nano- 
tube (V, = 20 V). Here an electrical potential 
difference was applied between the nanotube 
(which was connected to  a nanotube fiber) and a 
counterelectrode (not shown). The charge in- 
duced on the nanotube interacted with the elec- 
tric fields between the nanotube and the coun- 
terelectrode and resulted in an attractive force, 
which caused the nanotube to bend. An analysis 
of the shape of the bent nanotube showed that 
essentially all of the induced charge was at the tip 
of the nanotube. The bending process was revers- 
ible even for extreme bends (with radii of curva- 
ture <I00 nm), which indicates the Large elastic 
strength of the nanotubes. (C) Measured static 
deflections as a function of V, for two nano- 
tubes (solid circles: D = 18 nm, L = 4.6 km; 
open circles: D = 41 nm, L = 1.5 km), showing 
the quadratic dependence on V,. The slight 
voltage offsets of the minima of the fitted 
parabola are attributed t o  work function effects 
(see also Fig. 4). 

equation (29) 

" /(D' + Dl) ( I )  Vl = G p \  

where D is the outer diameter, Dl is the inner 
diameter, Eb is the elastic modulus, p is the 
density, and p, is a constant for the jth har- 
monic: p, = 1.875, p, = 4.694. This equa- 
tion results from the Bernoulli-Euler analysis 
of cantilevered elastic beams (29). If the 
beam bends by elongation of the outer arc 
and a compression of the inner arc of the 
bend, then Eb can be identified with the 
Young's modulus E of the material (29). 
However, to retain generality, we will call 
this constant the effective bending modulus 
Eb, for the reasons given below. 

Higher modes can be excited, such as the 
second harmonic of the same nanotube (Fig. 
2C). The frequency of this vibration is v, = 
3.01 MHz = 5.68 v,. For a uniform cantile- 
vered beam, the theoretical ratio v,/v, = 6.2 
(29). The position of the node in the v, mode 
is found at 0.76 L, which is very close to the 
theoretical value of 0.8 L (29). Although a 
detailed analysis of the sequence of harmon- 
ics combined with an analysis of the deflect- 
ed contours can provide detailed information 

Fig. 2. Nanotube response to  resonant alternating 
applied potentials. (A) In the absence of a poten- 
tial, the nanotube tip (L = 6.25 p,m, D = 14.5 nm) 
vibrated slightly because of thermal effects. Al- 
though thermal amplitude is difficult to evaluate, 
it was nevertheless used to measure the Young's 
modulus in a previous study (72). (B) Resonant 
excitation of the fundamental mode of vibration 
(v, = 530 kHz); the shape corresponds dosely to  
that expected for a cantilevered uniform beam. 
The high contrast at the extremes of the oscilla- 
tions is caused by the relatively long times spent 
at the turning points [compare with (A)]. (C) 
Resonant excitation of the second harmonic (v, 
= 3.01 MHz). Both the frequency and the shape 
correspond reasonably well to that expected for 
this harmonic For this nanotube, E, = 0.21 TPa. 

on individual nanotubes, we have chosen to 
concentrate on trends in the elastic moduli 
with nanotube diameter. The resonant fie- 
quencies may drift very slightly with time 
(either positively or negatively). However, 
we have not found evidence for irreversible 
changes to the nanotubes. Even when a large- 
amplitude resonant vibration was applied to a 
nanotube for 30 min (>lo9 cycles), the fre- 
quency drift was less than 1%. 

Figure 3 shows the E, for several MWNTs 
determined from measurements of v,, D, and L 
(30). Several values from other sources are 
superimposed. It is clear that Eb is very large 
(--I TPa) for D < 10 nm, and that Eb drops 
dramatically to lower values (E, = 100 GPa) 
for tubes of larger diameter. For small D, our 
measurements correspond well with those 
found by others, but for larger D our values are 
significantly lower than those found in (16). 

Such a great reduction in Eb must be related 
to the emergence of another bending mode of 
the nanotube. Most likely, this mode corre- 
sponds to the wavelike distortion or ripple on 
the inner arc of the bent nanotube that is ob- 
served for slightly bent, relatively thick nano- 
tubes (11, 20). A particularly clear example is 
shown in Fig. 3D (31). The ripple structure in 
the tube 3 1 nm in diameter caused the nanotube 
to bend uniformly, with a radius of curvature 
from -400 nm, which is only a factor of 3 
smaller than typical curvatures in the resonant 
experiments described here. The amplitude of 
the ripple increased uniformly from essentially 
0 for layers near the center of the nanotube to 
about 2 to 3 nm for the outer layers. There were 
no discontinuities in consecutive interlayer 
spacings nor was there evidence of defects. 
Ripple amplitude increased continuously and 
smoothty with decreasing nanotube curvature. 
In contrast, a thin slightly bent nanotube (8 nm 
in diameter) did not present ripples for a 300- 
nm radius of cwature, but the same tube did 
show evidence for buckling (32) and damage 
on sections where the radius of curvature was 
decreased to 24 nm ( I  1, 19). 

The appearance of the ripples is most likely 
related to the consequent reduced compression 
of the carbon bonds of the inner arc of the bend 
as compared with uniform bending. This pro- 
cess causes a large reduction in the strain ener- 
gy associated with the Young's modulus paral- 
lel to the basal plane of graphite (for bulk 
graphite, Ea = 1.06 TPa). The rippling mode is 
likely to be energetically favorable (at least for 
large diameter tubes), because the other four 
elastic moduli for bulk graphite are all much 
smaller than Ea (33). However, a detailed the- 
oretical analysis will be required to explain the 
crossover from the uniform (compression/elon- 
gation) mode to the rippling mode. 

Defects that cross-link adjacent nanotube 
layers could prevent this rippling effect and 
thereby cause the nanotubes to retain their 
large Eb. This mechanism could then explain 
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discrepencies between our measurements and 
those of others (16) and is reminiscent of 
work hardening in metals, which causes soft 
metals to become harder because of crystal- 
lographic defects. This hypothesis is support- 
ed by preliminary results that showed that 
200-keV electron irradiation caused the res- 
onance frequencies to increase. Electrons 
with these energies (in contrast to the 100- 
keV electrons used in this work) are known to 
damage graphitic structures (34). 

The dependence of the amplitude on fre- 
quency (for constant V,) shown in Fig. 3 
(inset) is approximately Lorentzian, as ex- 
pected for damped harmonic vibrations. The 
full width at half maximum Avlv = 6 X 
corresponds to a quality factor Q = 170 for 
the resonance of this nanotube (Eb = 0.098 
TPa). Larger Qs were observed for tubes that 
exhibited larger E,, (for example, Q = 500, 
Eb = 0.73 TPa). We have not observed shifts 
in the resonance frequencies for large-ampli- 
tude vibrations, which indicates that the re- 
sponse remains linear for large-amplitude de- 
flections and for all measured Ds. 

The rippling mode is linear and its prop- 
erties are well described by the Bernoulli- 
Euler analysis (29). The correct prediction of 
the frequency ratio v21v, is further strong 
evidence that bending does not involve kink 
formation. Nevertheless, the reduction by an 
order of magnitude in the rigidly of the nano- 
tube certainly shows the dramatic effect of 
this mode on the elastic properties. The rip- 
pling mode appears to be more damped than 
the uniform mode, which may be due to 
increased internal friction (24). However, 
there is no evidence for hysteresis or nonlin- 
ear response in this mode, which sets it apart 

from the buckling instability (13, 14, 19). 
The resonance methods developed here can 

be applied to determine various other properties 
of carbon nanotube systems. For example, in 
general a static charge is present on opposing 
electrodes of different materials, even when 
both electrodes are in mutual electrical contact 
and at ground potential (35). These charges can 
be neutralized by applying the appropriate bias 
voltage AV between the electrodes, which is 
related to the work functions of the materials 
involved. This well-known effect is used, for 
example, in the Kelvin probe method (36) to 
determine work functions and can be used anal- 
ogously in the present configuration. If a con- 
stant voltage offset Vs is supplied to the time- 
dependent voltage, then V(t) = V, + Vd 
cos(wt). Consequently, the charge on a nano- 
tube is q = a[AV + V(t)] and so F(t) = P[AV 
+ V(t)]q, where a and f 3  are nanotube specific. 
The general expression for the force on a nano- 
tube is given by 

= af3[(A V + y)2 
+ 2 ( A  V + V,) Vdcos(ot) 

One of the two time-dependent terms in the 
force oscillates at the driving frequency, which 
scales linearly with V,, whereas the other is at 
twice this frequency and scales as V i .  The 
linear term contributes to the force even when 
V, = 0 (37). We have identified both the linear 
and the quadratic response through their char- 
acteristic voltage dependences (and frequency 
ratios). In particular, a plot of the vibration 

I A ~  P + + &  + *  w 
I . I . I , I . I . I I  

10 15 20 25 30 35 40 4! 
Diameter (nrn) 

Fig. 3. Elastic properties of nanotubes. (A) E, as a function of diameter: 
solid circles, present data; diamonds, data from (27); open circles, data 
from (72). [A further data point at D = 32.9 nm and E = 1.26 TPa from 
(76) is obscured by the inset.] Error bars indicate absojute error in L and 
D; the error in the resonant frequency is negligible. The dramatic drop in 
E, for D 12 nm is attributed to  the onset of a wavelike distortion, 
which appears to  be the energetically favorable bending mode for thicker 
nanotubes. There is no remarkable change in the Lorentzian line shape of 

amplitude at resonance as a function of V, 
shows a linear dependence in the linear mod; 
(Fig. 4B). This property distinguishes it from 
the quadratic mode, which is insensitive to Vs. 

Fig. 4. Further applications of the resonant meth- 
od described here. (A) Resonance vibrations of a 
nanotube loaded with a spheroidal carbon parti- 
cle. From the resonance frequency v = 968 kHz, 
the mass of this particle is determined to  be M = 
22 + 6 fg. E, = 90 CPa for this 42-nm-diameter 
nanotube (see Fig. 3). so that the calculated un- 
loaded resonant frequency of the tube is 3.28 
MHz. The calculated mass of this 308-nm-diam- 
eter particle is M - 30 fg, assuming spherical 
geometry and bulk density. This nanobalance 
technique is a direct way t o  weigh individual 
particles in the femtogram-to-picogram size 
range. (6) Plot of the amplitude of vibration of a 
nanotube at resonance with the static bias volt- 
age V,, which demonstrates the predicted linear 
dependence and the voltage offset AV due to  
work function effects. Error bars indicate errors in 
measuring the vibration amplitude. 

the resonance (inset) for tubes that have large or small moduli, although 
the low-modulus nanotubes appear to  be more damped than the high- 
modulus tubes. (D) High-resolution TEM image of a bent nanotube 
(radius of curvature = 400 nm), showing the characteristic wavelike 
distortion. (6 and C) Magnified views of a portion of (D). The amplitude 
of the ripples increases continuously from the center of the tube to  the 
outer layers of the inner arc of the bend. Note the absence of disconti- 
nuities in the interlayer spacing. 
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The intercept of the line with the abscissa yields 
1V. This geomehy-independent constant is 
characteristic for the specific nanohlbe under 
investigation and is typically on the order of 
several volts. Similarly, attaching nanoscopic 
conducting paiticles to the nanotubes facilitates 
measurements of their work functions. 

The methods developed here are also well 
suited to measure masses in the picogram-to- 
femtogram mass range, as demonstrated in Fig. 
4A, which shows the resonance of a carbon 
particle that is attached to the end of a nanohlbe 
(38). The mass of this particle was determined 
from the resonance ftequency of the structure 
and was found to be M = 22 -i- 6 fg (1 fg = 

10-l5 g). This value is near that calculated from 
the measured geomehyy: assuming bulk amor- 
phous carbon density--that is, M - 30 fg. This 
nanobalance method can be applied to other 
particles of similar dimensions, such as viruses. 
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An Elusive Blind-Thrust Fault 
Beneath Metropolitan Los 

Angeles 
John H. Shawl* and Peter M. ShearerZ 

Seismic reflection profiles, petroleum wells, and relocated earthquakes reveal the 
presence of an active blind-thrust fault beneath metropolitan Los Angeles. A 
segment of this fault likely caused the 1987 Whittier Narrows (magnitude 6.0) 
earthquake. Mapped sizes of other fault segments suggest that the system is 
capable of much larger (magnitude 6.5 to 7) and more destructive earthquakes. 

Damages exceeding $35 billion from the 1994 
Northridge [magnitude (M) 6.71 earthq~~ake (I); 
combined with recent evidence of larger (>M 
7) events in the geologic record (2) ,  have fo- 
cused attention on the hazards posed by thrust 
faults to ~netropolitan Los Angeles. Efforts to 
assess and mitigate these hazards are conlpli- 
cated, however, because thrust faults beneath 
the city are typically blind, meaning that they 
lie concealed beneath Earth's surface (3; 4). 
Here, we used hlgh-resolution, subsurface im- 
ages acquired by the petroleuln indushy (Fig. 1) 
and relocated seismicity to map a large blind- 
thrust system lying directly beneath the metro- 
politan area (Fig. 2). 

Many blind thrusts produce near-surface 
folds that grow during repeated earthquakes 
(3-5) in response to motions through bends in 
fault planes or above propagating fault tips. 
and their shapes reflect underlying fault ge- 
ometries and slip (6; 7). Seismic reflection 
profiles and information from oil wells reveal 
a series of these anticlines extending from 
downtown Los Angeles to the Coyote Hills 

(8--10) in northern Orange County (Fig. 2). 
These folds grew in the Quateinary while 
sedi~nents were deposited above them, yield- 
ing pattelus of defolmed strata that record 
fold growth and fault slip (11). These de- 
formed strata are particularly well imaged in 
the Santa Fe Springs anticline (Fig. 1). 

On the basis of fault-related folding theo- 
ries (11). the shape of the growth fold at 
Santa Fe Springs suggests that an underlying 
fault; which we call the Puente Hills thrust, 
dips to the north and extends upward into the 
Pliocene Fernando Formation. This fault 
shape and position are consistent with a 
north-dipping reflection beneath the anticline 
that cuts across bedding. This reflection is 
observed on more than 10 seismic profiles 
and persists through a range of processing 
steps aimed to remove noise and artifacts 
(12). Thus, we interpret this reflection as an 
image of the fault surface, caused by velocity 
and density contrasts that exist across the 
fault plane. 

Fault-plane reflections in a series of seis- 
mic profiles define an east-west-striking sur- 
face that dips about 27" to the north. We 

'Department o f  Earth and Planetary Sciences, Harvard extrapolated beyolld the linlits of the fault- 
University, Cambridge, M A  02138, USA. 'Institute o f  plane reflectioIls, fold shape, as imaged 
Geophysics and Planetary Physics, Scripps lnst i tute o f  
Oceanography, University o f  California, San Diego, La in the seislnic profiles, to predict the 
jolla, CA 92093-0225, USA. shape (6. 11) and map the fault surface (Fig. 
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