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ways denser than the plagioclase on their liqui-
dus, thus precluding crystal settling as the cause 
for the layering observed in mafic intrusions; 
and other mechanisms have been invoked [for 
example, oscillatory nucleation and subsolidus 
recrystallization (23)]. Before this work, the 
uncertainty in VHO precluded a quantitative 
evaluation of the effect of dissolved water on 
the density of the iron-rich liquids, which can 
now be calculated. 

Estimates of pre-emptive water contents in 
tholeiitic basalts [up to 1 weight % H20 (24)] 
are derived primarily from analyses on glasses 
from mid-ocean ridges and hot spots. Because 
H20 is incompatible in the anhydrous pheno-
cryst assemblage of tholeiitic basalts, crystalli­
zation causes both FeOT and H20 to increase in 
residual liquids. At a FeOT concentration of 
15.8 weight % [the peak value observed in an 
experimental tholeiitic liquid at the point of 
Fe-Ti oxide saturation (25)], only —0.8 weight 
% dissolved water is required to render the 
liquid less dense than the coexisting plagioclase 
phenociysts of An58 composition [2.699 g/cm3 

(25)]. Such a modest water content could arise 
after 40% crystallization of a tholeiitic basalt 
with an initial water content of 0.5 weight % 
H20. 

The effect of water on the density of 
magmatic liquids also relates to models of 
convection within chambers, driven by ther­
mal and compositional density gradients (26). 
The role of water in offsetting the effect of 
temperature to promote buoyant ascent of 
evolved melt along sidewall boundary layers 
was discussed by Shaw (27) and further ex­
plored by several others (28). The results of 
our study indicate that a gradient of only 0.16 
and 0.25 weight % H20, respectively, is all 
that is required to offset the effect on melt 
density of a 100°C temperature gradient in a 
rhyolitic and basaltic melt at crustal depths. 
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regulatory factor TGF-|3 and vitamin D (5), and 
the phenotype of VDR knock-out mice (6), 
indicate that there may be cross-talk between 
the two signaling pathways. We therefore ex­
amined ligand-induced transactivation function 
of VDR and other nuclear receptors in cells 
stimulated by TGF-|3 or bone morphogenetic 
protein (BMP). VDR expression vectors and 
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chloramphenicol acetyltransferase (CAT) re- 
porter plasmid were transfected into COS-1 
cells, and cells were treated with or without 
1,25-dihydroxqvitamin D, [l ,25(OH),D3] or 
TGF-P (7-10). The transactivation function of 
VDR was significantly enhanced by the treat- 
ment with TGF-P (Fig. lA), but not BMP. The 
constitutively active forms of either TGF-P 
type I receptor [TPR-I(TD)] or BMP type I 
receptor [BMPR-IA(QD) or BMPR-IB(QD)] 
(11, 12) were transfected into COS-1 cells with 
various nuclear receptor expression plasmids 
and CAT reporter plasmids bearing their re- 
spective response elements (7-9). TPR-I(TD), 
but not BMPR-IA(QD) or BMPR-IB(QD), in- 
creased the 1igan;d-induced transactivation ac- 
tivity of VDR (Fig. 1A); however, it did not 
affect the other tested nuclear receptors: estro- 
gen receptor a (ERa), androgen receptor (AR), 
glucocorticoid receptor (GR), retinoic acid re- 
ceptor (RAR), and retinoid X receptor (RXR) 
(9, 13). Transactivation function of VDR was, 
however, suppressed by transfection with the 
catalytically inactive TGF-P type I receptor 
[TPR-I(KR)] (Fig. 1A). Similar results were 
obtained with other cell lines such as HeLa and 
HOS (13). The presence of TGF-P or BMP 
receptors did not affect the expression of VDR 

protein as estimated by protein immunoblotting 
(6, 13). Thus, the ligand-induced transactivation 
fi~nction of VDR was enhanced by TGF-P, but 
not by BMP signals. 

The members of the SMAD protein fam- 
ily (Smadl through Smad8) are signal trans- 
ducers of the TGF-P-BMP superfamily (14). 
Smadl and Smad5 transduce signals for 
BMPs (15, 16), and signals for TGF-P are 
mediated by Smad2 and Smad3 (1 7). Smad4 
acts as a common partner for these pathway- 
specific SMAD proteins (18). When TGF-P 
or BMP receptors are activated by the bind- 
ing of cognate ligands, pathway-specific 
SMADs are phosphorylated by the type I 
receptor serine-threonine kinases. Phospho- 
lylated SMADs folm stable complexes with 
Smad4, and these complexes translocate into 
the nucleus where they activate transcription 
as coactivators or DNA-binding transcription 
factors (14, 17-19), though the overexpressed 
Smad3 and Smad4 are predominantly local- 
ized to the nucleus (20). We therefore inves- 
tigated whether SMAD proteins could en- 
hance the transactivation function of VDR. 
Neither Smad2 nor Smad4 stimulated the 
transactivation of VDR (Fig. 1B). However, 
expression of equivalent amounts of Smad3 
did enhance the ligand-induced transactiva- 
tion fi~nction of VDR, and Smad4 and TPR- 
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(13). The enhanced transactivation function 
of VDR by Smad3 was also observed in 
vitamin D response elements (VDREs) de- 
rived from mouse osteopontin (OP) or human 
osteocalcin (OC) gene promoters (Fig. 1C) 
(8) .  Smadl, a signal transducer of BMPs, had 
no effect on the ligand-induced transactiva- 
tion of VDR (Fig. 1A). Thus, only Smad3 
appears to enhance the ligand-induced trans- 
activation function of VDR. 

To test whether SMADs might serve as 
coactivators of VDR, we examined whether 
Smad3 physically interacts with VDR in 
vivo. Although no interaction of VDR with 
Smad2 was detected in the mammalian two- 
hybrid system ( 2 4 ,  which detects protein- 
protein interactions in viva; the ligand-depen- 
dent interaction of VDR with Smad3 was 
evident when compared to that of VDR with 
RXR (Fig. 2A). Interaction of Smad3 with 
VDR was also tested by coirnmunoprecipita- 
tion (22) of Smad3 and VDR from COS-1 
cells transfected with full-length VDR 
[VDR(l-424)] and FLAG-tagged Smad3. 
VDR was detected in anti-FLAG immuno- 
precipitate by protein immunoblotting with 
antibody to VDR. The presence of 
1,25(OH),D, enhanced complex formation 
of Smad3 and VDR and heterodimerization 
with RXR (Fig. 2B). These findings indicate 
that VDR and Smad3 interact in vivo in a 
ligand-dependent manner. 

We assessed interaction of a glutathione 
S-transferase (GST)-VDR fusion protein 
(23) with in vitro-translated Smad3 protein 
(24). The proteins interacted directly in the 
presence of 1,2.5(OH),D3. A series of trun- 
cated Smad3 proteins showed that the NH2- 
terminal Mad homology 1 (MH1) region of 
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Fig. 1. Enhanced ligand-induced transactivation function of VDR in cells 
expressing activated TGF-P receptor. (A) CAT assays were performed 
w i t h  extracts f rom the COS-I cells transfected w i t h  VDR expression 
vector (pSG5-VDR) (1 k g )  and CAT reporter plasmid bearing a VDRE (7) 
(DR3T-G-CAT) (3 kg) ,  together w i t h  either constitutively active [TPR- 
I(TD)] or catalytically inactive [TPR-I(KR)] TGF-P type I receptor expres- 
sion vector (5 pg), constitutively active [BMPR-IA(QD) and BMPR- 
IB(QD)] or catalytically inactive [BMPR-IA(KR) and BMPR-IB(KR)] BMP 
type I receptor expression vectors (5 pg), along w i th  Smadl expression 

vector (pcDNA3-Smadl) (5 pg)  in  the presence (+) or absence (-) o f  
1,25(OH),D, (lo-' M) or TCF-P [0.5 (+) or 1 (++) nglml].  (B) Increased 
ligand-induced transactivation function of VDR in cells transfected w i th  
Smad3. COS-I cells were cotransfected w i t h  pSG5-VDR (1 kg); either 
DR3T-G-CAT, OP-C-CAT, o r  OC-G-CAT (3 kg); either TPR-I(TD) or 
T~R-I (KR) (5 pg); and Smad2 (pcDNA3-SmadZ), Smad3 (pcDNA3- 
Smad3), or Smad4 (pcDNA3-Smad4) expression vector (5 k g )  i n  the 
presence or absence of 1,25(OH),D, (lo-' M). Al l  values represent 
averages 2 SD o f  a t  least three independent experiments. 
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Smad3 is required for this interaction (Fig. 
3A). The MH1 region was also indispensable 
for the interaction of Smad3 with VDR in the 
mammalian two-hybrid system with the trun- 
cated Smad3 proteins fused to VP16 and 
GALCVDR(DEF) (Fig. 3A). The MH1 re- 
gion was also required for immunoprecipita- 
tion of VDR with Smad3 proteins (Fig. 3B). 
These results indicated that the MH1 region 
mediates the interaction of Smad3 with VDR. 
Smad3 mutants [S3(4 1 -435), S3(68-435), 
S3(147-435), and S3(238-435)], lacking the 
VDR interaction domain, did not enhance 
the ligand-induced transactivation function 
of VDR, even when the intrinsic transacti- 
vation domain (MH2 domain) of Smad3 
remained intact (Fig. 3A). In fact, overex- 
pression of such Smad3 mutants suppressed 
ligand-induced transactivation function of 
VDR (Fig. 3A). 

A series of truncated VDR proteins dem- 
onstrated that the middle region of the ligand- 
binding domain (E domain) of VDR is re- 
quired for the interaction with Smad3 (Fig. 
4A). The COOH-terminal end of VDR is es- 
sential for the ligand-induced transactivation 

function of the VDR ligand-binding domain 
(AF-2) and directly interacts with the nuclear 
coactivators in a ligand-dependent way (25). 
The region exhibited no interaction, but rath- 
er seemed to have an inhibitory effect on the 
Smad3 interaction (Fig. 4A). The in vitro bind- 
ing of Smad3 and VDR was ligand-indepen- 
dent, and the binding was weak relative to 
that of the heterodimerization of VDR with 
RXR (Fig. 4A). 

Because the truncated Smad3 mutants 
lacking interaction with VDR suppressed the 
ligand-induced transactivation of VDR, it ap- 
pears that the MH2 domain of Smad3 and 
VDR may competitively recruit the same fac- 
tors. Therefore, we used nuclear extracts of 
cells (26) overexpressing FLAG-Smad3 to 
test for interaction with GST-VDR. FLAG- 
Smad3 in the nuclear extracts showed li- 
gand-dependency in the interaction with VDR 
in vitro (Fig. 4B), as seen in vivo, and the MH1 
region was also required for this in vitro ligand 
dependency (13). Thus, an unidentified nuclear 
component may stabilize the ligand-dependent 
complex formation of VDR with Smad3. Such 
components might include coactivators for 

VDR such as the members of the SRC-IRE2 
protein family, which directly interact with the 
minimal activation domain (AD) of AF-2 in the 
COOH-terminal end of the E domain in a li- 
gand-dependent manner (3,2527). To test this 
possibility, we chose SRC-1, because this co- 
activator binds to the AF-2 AD of VDR (25, 
28). Overexpression of SRC-1 enhanced the 
ligand-dependent interaction between Smad3 
and VDR (Fig. 4B). The SRC-lstabilized in- 
teraction of VDR with Smad3 w e  further con- 
firmed by coimrnunoprecipitation experiments 
(Fig. 4C) and the mammalian two-hybrid sys- 
tem (13). When VDR was either truncated 
[VDR(l-357)] or mutated [VDR(L417S) and 
VDR(E420Q)l in the AF-2 AD such that they 
did not interact with SRC-1 (25) but still 
interacted with Smad3 in vitro, the ligand- 

Fig. 2. Ligand-dependent inter- A 
action of Srnad3 with VDR in 
vivo. (A) Interactions of SMADs 7 

with VDR were examined in the 
mammalian two-hybrid system 6 

in the presence (solid columns) B 
or absence (open columns) of = 5 -  

1,2S(OH),D, (lo-' M). CAT assays P 
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m 
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munoprecipitation of Smad3 
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or pcDNA3-FLAG-RXR (10 
pg) in the presence or ab- 
sence of 1,25(OH),D, 1 2 3 4 5 8 7 8 9  

(lo-' M). Cells were lysed FLAGSmad3 - - + + + + - - - 
in TNE buffer, irnrnunopre- VDR + + + + + + + + +  
cipitated with monoclonal 1,2HOHh& + + + + + + 

antibody to FLAG, and in- ,,,,, - - - - - - + - - 
teracting proteins were de- FCPIG-RXR + + 

tected by irnrnunoblotting 
with antibody to VDR (6). Expression of FLAG-Srnad3, FLAG-ER, and FLAG-RXR is shown by imrnuno- 
blotting with antibody to FLAG. 

-=- - -*- .y-rp. 

mutants 

1 2 3 4 5 6  

1.25(0H),D3 - + - + - + 
VDR + + + + + +  
FLAGSmad3 + + - - - - 
MG-!%3(21-435) - - + + - - 

Fig. 3. Smad3 domain required for interaction 
with VDR (A) Interaction domain of Smad3 for 
VDR. VDR was tested for the interaction with 
the indicated portions of Smad3 in a GST-pull 
down assay and a mammalian two-hybrid as- 
say (-, no interaction; +, interaction; no sym- 
bol, not determined). The eff- of Smad3 
mutants on transactivation function of VDR 
were estimated by CAT assays, using the ex- 
tracts from COS-I cells expressing VDR and the 
truncated Smad3 mutants in the presence of 
1,25(OH),D+ the fold activations by Smad3 
proteins are In the right panel. (0) Coimmuno- 
precipitation of Smad3 deletion mutants and 
VDR. lnteractions between Smad3 deletion mu- 
tants [S3(21-435) and S3(41-435)] and VDR 
were analyzed by immunoprecipitation with 
anti-FLAG followed by immunoblotting using 
antibody to VDR (Fig. 2). COS-1 cells were 
transfected with pSG5-VDR, pcDNA3-FLAG- 
Smad3, pcDNA3-FLAGSS3(21-435), or pcDNA3- 
FLAG-S3(41-434) (10 kg) in the presence or ab- 
sence of 1,25(OH),D, (lo4 M). Expression of 
FLAG-Smad3 and its mutants is shown by immu- 
noblotting with antibody to FLAG. 
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Fig. 4. Ligand-dependent formation of a VDR-Smad3 complex enhanced 
by SRC-1. (A) Interaction domain of VDR for Smad3. The indicated 
portions of VDR or mutated VDRs were tested for interaction with 
full-length Smad3 in a GST-pull down assay and a mammalian two- 
hybrid assay. (B) The in vitro ligand-dependent interaction of VDR with 
Smad3 from the nuclear extracts. Nuclear extracts were prepared from 
COS-1 cells expressing FLAG-Smad3, FLAG-ER, or FLAG-RXR with or 
without SRC-1 in the presence or absence of 1,25(OH),D,. FLAG-Smad3, 
FLAG-ER, or FLAG-RXR in the cell extracts were precipitated by GST-VDR. 
Interacting proteins were detected by immunoblotting with monoclonal 
antibody to  FLAG. (C) Effects of SRC-1 on the interaction between 
Smad3 and VDR or mutated VDRs. Interactions of Smad3-VDR or 
Smad3-VDR mutants were analyzed by coimmunoprecipitation. COS-1 
cells were cotransfected with pSG5-VDR, pSG5-VDR(1-357), pSG5- 

VDR(L417S), pSG5-VDR(E420Q), pcDNA3-FLAG-Smad3, pcDNA3-SRC-1, 
or pcDNA3-SRC-lml23 (10 pg) in the presence or absence of 
1,25(OH),D, M). Cells were lysed in TNE buffer, immunoprecipi- 
tated with monoclonal antibody to  FLAG, and interacting proteins were 
detected by immunoblotting with antibody to  VDR (6). Expression of 
Smad3 is shown by immunoblotting with the antibody to FLAG. (D) 
Effect of SRC-1 on Smad3-enhanced transactivation function of VDR. 
CAT assays were done as described (Fig. 1). COS-1 cells were transfected 
with pSG5-VDR, pcDNA3-Smad3, or pcDNA3-SRC-1 in the presence or 
absence of 1,25(OH),D,. (E) Ligand-dependent interaction of Smad3 
with RXRIVDR heterocomplex in vivo. Mammalian three-hybrid system 
estimated by CAT assays were done as described (Fig. 1). COS-I cells 
were transfected with GALCRXR, pSG5-VDR, or VP16-Smad3 in the 
presence or absence of 1,25(OH),D,. 

dependent interaction of VDR with Smad3 
was abolished (Fig. 4C) [mutation Leu4" + 

SePl7 indicated as L417S (29)l. Conversely, 
overexpression of a SRC-1 mutant protein 
(SRC-lm123), which has point mutations in 
all of the three LXXLL motifs (29) and does 
not interact with VDR, inhibited the ligand- 
dependent interaction between Smad3 and 
VDR (Fig. 4C). Similar results were obtained 
in these assays when the TIF2 (28) were used 
instead of SRC- 1 (13). SRC- 1 augmented the 
Smad3-enhanced transactivation function of 
VDR (Fig. 4D). Thus, the ligand-dependent 
interaction of VDR with Smad3 apparently 
requires at least a member of the SRC-11 
TIF2 protein family. We examined whether 

Smad3 binds SRC-1 directly in vitro. A 
ligand-dependent interaction between GST- 
VDR and SRC-1 was observed (13). How- 
ever, Smad3 showed no interaction with 
SRC-1 or TIF2 (13). Finally, we confirmed 
the ligand-dependent interaction between 
Smad3 and RXRNDR heterocomplex in vivo. 
Although no interaction of Smad3 with RXR 
was detected in the mammalian three-hybrid 
system, the ligand-dependent interaction of 
Smad3 with RXRMIR heterocomplex was ob- 
served (Fig. 4E). 

Our results established a molecular basis 
for cross-talk between TGF-P and vitamin D 
signaling pathways. The cooperative actions 
of vitamin D and TGF-P can be synergistic or 

antagonistic in a tissue-specific manner. Be- 
cause SMAD proteins are differentially ex- 
pressed in target tissues for TGF-f3, the tis- 
sue-specific amounts of endogenous SMAD 
proteins may contribute to the cooperative 
actions. 
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p53- and ATM-Dependent 
Apoptosis Induced by 

Telomeres Lacking TRFZ 
Jan Karlseder,'" Dominique Broccoli,'*t Yumin Dai,' 

Stephen Hardy,'$ Titia de Langel§ 

Although broken chromosomes can induce apoptosis, natural chromosome ends 
(telomeres) do not  trigger this response. I t  is shown that this suppression of 
apoptosis involves the telomeric-repeat binding factor 2 (TRFZ). Inhibition of 
TRFZ resulted in apoptosis in a subset of mammalian cell types. The response 
was mediated by p53 and the ATM (ataxia telangiectasia mutated) kinase, 
consistent wi th  activation of a DNA damage checkpoint. Apoptosis was not due 
t o  rupture of dicentric chromosomes formed by end-to-end fusion, indicating 
that telomeres lacking TRFZ directly signal apoptosis, possibly because they 
resemble damaged DNA. Thus, in some cells, telomere shortening may signal 
cell death rather than senescence. 

Mammalian telomeres consist of several 
kilobases of tandem TTAGGG repeats 
bound by the related telornere-specific pro- 
teins, TRFl and TRF2 (I). TRFl regulates 
telomere length (2) and TRF2 maintains 
telornere integrity (3). Inhibition of TRF2 
results in loss of the G-strand overhangs 
from telomere termini and induces covalent 
fusion of chromosome ends (3, 4). 

To investigate the cellular consequences of 
telomere malfunction, we used adenoviral vec- 
tors to overexpress intact and truncated versions 
of TRFl and TRF2 (Fig. 1) (5). These vectors 
encoded full-length TRFl (AdTRFl); a domi- 
nant negative version of TRF1 lacking the Myb 
DNA binding dornain (AdTRFIAM); full- 
length TRF2 (AdTRF2); an NH,-terminal de- 
letion of TRF2 lacking the TRF2-specific basic 

Table 1. Cell type dependence of AdTRFZiBiM-induced apoptosis 

Chromosome fusions per % cells undergoing 
anaphase* apoptosist 

Cell linelstrain 

Uninfected AdTRFZABAM Uninfected AdTRFZiBiM 

HeLall: (cervical carcinoma) 0.1 i 0.01 1.2 i 0.04 2.7 2 0.6 38 2 1.0 
HeLal.2.11: (cervical carcinoma) 0.1 2 0.01 0.9 i 0.07 2.0 i 1.0 40 i 1.7 
MCF7 (mammary adenocarcinoma) 0.1 i 0.01 0.9 i 0.06 3.0 2 1.0 29 i 1.2 
CD4+ T cells 0.2 i 0.01 0.9 i 0.02 6.3 i 0.6 39 i 1.5 
HT- 1080 (fibrosarcoma) 0.1 i 0.01 0.9 i 0.03 1.0 i 0.1 1.3 i 0.6 
Saos-2 (osteosarcoma) <O. 1 1.3 i 0.01 2.0 i 1.0 2.3 i 0.6 
SW 626 (ovarian carcinoma) <0.1 0.9 i 0.04 3.0 i 0.1 3.7 i 0.6 
WI-38 (fetal lung fibroblasts) <O.l 1.2 i 0.01 <0.01 <0.01 
HS68 (foreskin fibroblasts) <O.l 0.9 i 0.10 <0.01 <0.01 
MRC-5 (fetal lung fibroblasts) <O.l 0.9 i 0.08 <0.01 <0.01 
IMR-90 (fetal lung fibroblasts) <0.1 1.5 2 0.01 <0.01 <0.01 

'Infected cells (72 hours) were stained with DAPl and anaphases were examined for evidence of chromosome fusions 
(chromatin bridges and lagging chromosomes). The numbers indicated average fusion events per anaphase from three 
independent experiments and the SD. SDs below 0.01 are given as 0.01, *Percentage of cells positive for  TUNEL labeling 
72 hours after infection. Apoptotic CD4+ T cells were counted 48 hours after infection. The numbers are averages 
f rom three independent experiments and the SD. SDs below 0.1 are given as 0.1. ZHeLall and HeLal.2.11 are 
HeLa subclones. 
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