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Nonmethylated Transposable 
Elements and Methylated Genes 

in a Chordate Genome 
Martin W. ~immen,'" Sabine leitgeb,'* Jillian Charlton,' 

Steven J. M. J ~ n e s , ~  Barbara R. H a r r i ~ , ~  Victoria H. Clark,' 
Adrian Birdl-f 

The genome of the invertebrate chordate Ciona intestinalis was found to be a 
stable mosaic of methylated and nonmethylated domains. Multiple copies of 
an apparently active long terminal repeat retrotransposon and a long inter- 
spersed element are nonmethylated and a large fraction of abundant short 
interspersed elements are also methylation free. Genes, by contrast, are pre- 
dominantly methylated. These data are incompatible with the genome defense 
model, which proposes that DNA methylation in animals is primarily targeted 
to  endogenous transposable elements. Cytosine methylation in this urochor- 
date may be preferentially directed to genes. 

DNA ~nethylatioll in the dinucleotide sequence 
5'-CpG can silence transcription. The genome 
defense model ( I )  posits that the primary role of 
methylation in animal genomes is to repress 
potentially damaging transposition of endoge- 
nous elements. By analogy with fungal systems 
(4, the elements are hypothesized to be targets 
for methylation because of their repetition in 
the genome (3). The hypothesis is difficult to 
test t l~ough analysis of the globally methylated 
mammalian genome. We therefore studied the 
specificity of lnethylatioll in a fractionally 
methylated genome belonging to the sea squirt 
Cionii ii~testinalis, an invertebrate member of 
the chordate phylum. Like nlost invertebrate 
genomes, that of C. intestiiiulis contains com- 

parable amounts of methylated and nonmethy- 
lated DNA (4). We reasoned that any bias in the 
distribution of transposons or genes between 
the two fractions should therefore be readily 
detectable. 

Three cosmids containing C. intestinulis 
genomic DNA were studied in detail (5). The 
cosmids were sequenced, and the locations of 
likely protein-coding regions were deter- 
mined by GENEFINDER exon-prediction 
software ( 6 )  and database homology searches 
(Fig. 1, A through C). Putative proteins en- 
coded by 10 of 13 potential genes showed 
similarity to known proteins. A systematic 
search for repetitive elements anlong the cos- 
mid sequences and 1486 short random 
genonlic sequences ( 5 )  identified four trans- 
oosable elements belonging to recognizable - - - 

'Institute o f  Cell and Molecular Biology, University o f  families (7 ) :  a gypsy;'Ty3-like loIlg termillal 
Edinburgh, The King's Buildings, Edinburgh EH9 3JR, 
UK. 2The Sanger Centre, Wellcome Trust Genome 

repeat (LTR) retrotransposon (Cigi.-1), a long 

Campus, Hinxton,  Cambridge CBlO ISA, UK. interspersed element (LINE)-like element - 
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(Cili-1), a miniature inverted repeat (Cin~i-1), 

t~~ whom correspondence should be addressed, E. and a composite short interspersed element 
mail: A.Bird@ed.ac.uk (SINE) (Cics-1) with consensus RNA po- 
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lymerase I11 promoter A and B box sites 
(Table 1) (8). Cigr-I, Cimi-I, and Cics-1 
elements occurred in the cosmids, the latter 
two being very abundant (Fig. 1, A through 
C). 

Mosaic methylation of invertebrate ge- 
nomes has been inferred previously (4, 9), but 
domain maps have not been reported. DNA 
methylation was analyzed in genornic DNA 
from C. intestinalis by means of methylation- 
sensitive restriction endonucleases (10). The 
39-kb cicos2 and cicos46 inserts each contained 
a domain of several kilobase pairs that is meth- 
ylated in the genome and flanked by nonmethy- 
lated DNA (Fig. 1, A and B). Most of the 
cicos41 insert was methylated in the genome, 
but the right extremity was nonmethylated (Fig. 
1C). Methylation patterns in sperm and carcass 
DNA were similar. Projection of the methyl- 
ation patterns onto a map of CpG frequency 
showed striking coincidence between methylat- 

ed domains and domains of CpG deficiency 
(Fig. 1, A through C). Given strong evidence 
that CpG deficiency is due to hypermutability 
of methyl-CpG ( l l ) ,  the data suggest that the 
observed methylation patterns are evolutionar- 
ily stable. The C. intestinalis genome appears to 
be equally partitioned between methylated and 
nonmethylated domains, based on the sepa- 
ration of methylated and nonmethylated 
DNA after restriction endonuclease treatment 
(4, 8). The presence of methylation at about 
25% of genomic CpGs (4) is compatible with 
this estimate, as the CpG density of methyl- 
ated domains is about half that of nonrnethyl- 
ated domains. 

The Cigr-1 element was identified in ci- 
cos41, where it is flanked by methylated 
DNA (Fig. 1C). Methylation of the element 
(Fig. 2A) was investigated by Southern 
(DNA) blotting and bisulfite sequencing (12). 
We estimated that there were approximately 

B crcosse 

Repeats II 1 I 111 311t1 

5' 
m.3 

3'PP sA 
Nonmeth. 1 1  I It II I I 111 1 11 1 

Meth. I I I  II 

10 kb 20kb 

bp- 

Fig. 1. Genes, repetitive elements, and endogenous methylation 
patterns in three cosmids containing C. intestinalis genomic DNA. (A 
through C) Diagrams of cosmids cicos2, cicos46, and cicos41, showing 
(from the top down) (i) repeats: the repetitive element families Cigr-7 
(yellow), Cimi-1 (red), and Cics-7 (blue). (ii) Genes: predicted coding 
sequences (Linked exon boxes) on 5' (above the Line) and 3' (below 
the line) strands. C2.3 (A) and C46.3 (B) correspond to  homologs 
of AND-1 (EMBL accession number X98884) and a zinc-finger protein 
gene, respectively. (iii) Nonmethylated sites for a range of methyl- 
CpC-sensitive restriction enzymes project above the Line, and 

75 copies of Cigr-1 per genome, based on 
Southern blots (Fig. 2C) and element fre- 
quency in a database of C. intestinalis DNA 
sequences (Table 1). All tested CpG restric- 
tion sites were nonmethylated in most Cigr-1 
copies (Fig. 2, B and D). Because transposi- 
tion depends on transcription from the LTR 
promoter (13), we tested methylation of all 20 
CpGs in this region and found that 8 out of 10 
sampled elements were methylation free, 
with 2 showing low-level methylation (Fig. 
2B). Comparison of the genomic contexts of 
Cigr-1 elements in four individuals showed a 
high degree of heterogeneity, which suggests 
that Cigr-1 is transpositionally active (Fig. 
2C). The presence of an internal 1.9-kb Pst I 
fragment confirmed that the probes detect 
bona fide Cigr-1 elements and that heteroge- 
neity is not due to incomplete digestion with 
Pst I. A Cigr-1 transcript was detected by 
reverse transcriptase polymerase chain reac- 

Probe: p2.4 p220 p2.30 p411 p41.8 p41.16 

methylated sites project below the line. Horizontal bars denote 
probes used t o  study methylation. (iv) CpG frequency is shown as 
plots of the observed-over-expected (ole) ratio across the cosmid 
using a 1000-base pair (bp) window and a step size of 200 bp. The 
dotted line shows a ratio of 1. (D) Examples of data used t o  establish 
rnethylation patterns of cicos2 and cicos41. The enzymes used t o  
digest genomic DNA were Msp I (M), Hpa II (H), Hha I (Hh), and Aci 
I (A). Probe coordinates are given in (70). The -12-kb band that 
appears in carcass DNA with probe p2.20 (cicos2 panel) corresponds 
to the methylated domain in  the center of this sequence (A). 
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A D Table 1. Major repetitive elements in the genome 
of C. intestinalis. Elements were identified accord- 

Pstl Pstl carcass 'perm ing to (7). The copy number estimate is based on 
1 245 7 1.9 kb-7 4226 

I - M H  M H extrapolation from the number of copies found in 
I I 

kb - kb 0.88 Mbp of genomic sequence in 1486 fragments 
ORF of mean size 592 bp, assuming a haploid genome 

LTR LTR size of 162 Mbp. 

B 

1 
'? 

9 95'9 5 ' 9  9 9 
I - - - 
\ - -  - - 
I - - -  
I - -  - 
19 - - 405 
PWY W  Y Y W ? Y Y Y  W Y  
?m'? W  ? ? W ? ? ? ?  W ?  
yy y y  W y ? W ? Y?Y W Y  

- M HHh - 
kb 

?W? 7 ? 9 W 9 ? ? ?  W ?  
YT?Y W ? Y  w ? Y ? ? W ?  
Y R ? W  Y Y W ? Y?? W Y  
P T P W  ? Y W ? Y P P W ?  
?%? 8 ? ? w ? ? ? ?  W ?  1.6 
yam? W p Y W Y ? ? ? W Y  
p w p  y p Y W ? T T T  R t  

0 5- 
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Fig. 2. Nonmethylated transposable elements in the C. intestinalis genome. (A) Diagram of the 
Cigr-7 element, showing LTRs, an open reading frame (ORF), and hybridization probes (RT1 and 
RTZ). (8) The upper map shows the absence of methylation at sites in Cigr-7 for CpC methylation- 
sensitive restriction endonucleases (open lollipops). Hpa II sites detected by probing with RT1 are 
labeled H. The lower maps show the analysis of methylation at all CpCs in the LTR promoter region 
(nucleotides 19 through 405) of Cigr-7 by bisulfite sequencing (72). Solid lollipops indicate 
methylated CpGs. (C) Variable genomic locations of Cigr-7 in four C. intestinalis individuals 
collected from the same location. Pst I digests were probed with RT2 to detect fragments extending 
downstream from the rightmost Pst I site in Cigr-7 to  the next site in flanking genomic DNA, or 
with RT1 to  show the internal 1.9-kb band. (D) The absence of methylation at Hpa II sites in Cigr-7. 
DNA from carcass and sperm were digested with no enzyme (-), Msp I (M), and Hpa II (H), and 
blots were probed with RT1. (E) Identical Hpa II and Msp I fragment patterns in genomic DNA 
probed with part of the LINE-like element Cili-7. An absence of methylation is also seen at Hha I 
(Hh) sites. (F) Analysis of methylated and nonrnethylated sites at seven copies of the miniature 
inverted repeat Cimi-7 by bisulfite sequencing. Missing CpG sites are due to sequence heteroge- 
neity. Solid lollipops indicate methylated sites; open lollipops indicate nonmethylated sites. 

tion (8). Thus, an apparently active multicopy Hha I, indicating the absence of methylation 
transposon escapes DNA methylation in C. (Fig. 2E). The short element Cimi-1 is abundant 
intestinalis. in both methylated and nonmethylated domains 

Similar results were obtained with a probe of the cosmids (Fig. 1, A through C). Bisulfite 
against Cili-1. Hpa I1 and Msp I patterns were sequencing c o n h e d  that many copies are 
identical and the element was susceptible to nonmethylated at all CpGs but that methylated 

Size Copy Name Description 
(bp) no. 

Cigr-1 Gypsyny-Hike LTR 4226 75 
retrotransposon 

Cimi-7 Miniature terminal 193 17,000 
inverted repeat 
SINE 

Cics- 7 Composite 302-333 40,000 
tRNA-derived SINE 

Cili-7 LINE-like element 7000* 50 

*No complete copies were found in the cosmids, so 
length could not be determined. The quoted size is that of 
a typical mammalian LINE. 

copies also occur (Fig. 2F). The abundant ele- 
ment Cics-1 occurs in methylated and non- 
methylated domains of the cosmids (Fig. 1, A 
through C). Correspondingly, five out of eight 
genornic copies of Cics-1 were nonmethylated 
by bisulfite analysis (8). In the sequenced cos- 
rnids, six tested CpGs were within Cics-1 ele- 
ments and all conformed to the methylation 
status of the surrounding domain. Four of the 
elements were intergenic (Fig. 1, A through C) 
and one was within an intron (see Fig. 3B). 
These findings suggest that the methylated cop- 
ies of these elements are those that happen to lie 
within methylated domains. 

Most of the C. intestinalis genes found in 
the three cosmids (9 out of 13) occur in meth- 
ylated domains (Fig. 1, A through C). The 
methylated domain in cicos2 covers the central 
region of the ANDI-related gene but does not 
extend to either the promoter or the last exon 
(Fig. lA, gene C2.3). Similarly, the down- 
stream transcribed region and upstream flanks 
of the zinc finger protein gene in cicos46 are 
methylated (Fig. lB, gene C46.3). The 5' end 
of the gene is within a nonmethylated, CpG- 
rich sequence patch that resembles a mamma- 
lian CpG island. All seven genes in cicos41 are 
within heavily methylated DNA (Fig. 1C). The 
fact that exons of genes can be heavily methyl- 
ated was confirmed by bisulfite sequencing of 
exon 6 of a guanylate-cyclaselike gene (Fig. 
3B). We also examined methylation of 10 C. 
intestinalis cDNAs with strong homology to 
known genes (Fig. 3A) (8). Eight hybridized to 
highly methylated sequences on the basis of 
Hpa IVMsp I susceptibility and two were non- 
methylated. The two independent estimates 
suggest that about threequarters of C. intesti- 
nalis genes, including many housekeeping 
genes, lie within methylated DNA. 

The origin and significance of mosaic meth- 
ylation patterns in invertebrate genomes are 
uncertain. No correlation between methylation 
and expression of genes is yet evident, although 
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Fig. 3. Most C. intestinalis genes lie within meth- 
1 - - ylated DNA. (A) Comparison of Msp I (M) and Hpa 

- I1 (H) digestion patterns for five cDNAs that have 
good matches to known gene transcripts. The 
matches are to translation initiation factor EIF-5A. 

ile.synth epi.s.a chymO isoleucyl-tRNA synthetase (ilesynth), CPI anchor 
biosynthesis protein PIC-A, epidermal surface antigen (epi.5.a.). and chymotrypsinogen (chymo). All 
but the chymotrypsinogen probes hybridize to Hpa Il-resistant DNA sequences. (B) Methylation at 
CpGs across exon 6 of a guanylate cyclasdike gene identified in the cosmid cicosl (EMBL 
accession number Z80904), as determined by bisulfite sequencing (72). Solid and open lollipops 
represent methylated and nonmethylated sites, respectively. The site labeled by an asterisk lies 
within a Cia-1 element. 

promoter methylation has not been specifically 
studied. Methylated genes of several inverte- 
brates are clearly transcribed, whereas non- 
methylated genes can be silent (4). If the pri- 
mary function of methylation in these organ- 
isms is to repress transcription, then a role in 
reducing transcriptional interference (14) is 
compatible with the data. Active gene do- 
mains often generate incorrectly initiated 
transcripts whose synthesis may interfere 
with authentic transcription (15). Methylation 
of genes might reduce interference and there- 
by focus initiation on the genuine promoter. 
Why then are some genes nonmethylated? 
Perhaps genes that are highly expressed in a 
few cell types, which appear to be overrep- 
resented among the nonmethylated class (4), 
have robust promoters that are less suscepti- 
ble to transcriptional interference. 

Genome defense can explain the role of 
DNA methylation in preventing sequence du- 
plication in certain fungi (2). The mechanism 
is not universal, however, as the nonmethyl- 
ated genomes of both Drosophila and Cae- 
norhabditis elegans harbor transposons. The 
present study shows that where methylation 
is present in an invertebrate genome, it is not 
necessarily targeted to transposable elements. 
DNA sequence repetition does not provoke 
methylation in C. intestinalis, as multicopy 
transposons and genes [for example, ribo- 
somal RNA genes (4)] often are nonmethyl- 
ated, whereas single-copy genes are methyl- 
ated. Thus, for invertebrates, the idea that 
transposition is controlled by DNA methyl- 
ation lacks supporting evidence [see also 
(16'1. In the human genome, transposon se- 
quences are heavily methylated (3), but meth- 
ylation affects most genomic DNA (about 
85% of those CpGs that are not within CpG 
islands), including exons of genes (17). Also, 
several retrotransposons are reportedly non- 
methylated for many cell generations in 

mammalian germ cells and early embryos, 
where protection against transposition might 
be thought to be important (18). In mammals, 
therefore, the evidence for a relationship be- 
tween DNA methylation and the restraint of 
endogenous elements remains inconclusive. 
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