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we should expect great variability in zooxan- tuation, wi th maximum temperatures in the summer different parts of the same colony were sampled 
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Dependence of Human Stem Cell 
25% other), and a considerable degree of anthropo- 
genic activity (swimming, boating, fishing, snorkeling. 
water-skiing). A colony was selected that lay in about 
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A chemokine SDF-1 (10) binds to its receptor 
Anti C X C R ~  Humsn/Mousa CXCR4, which is expressed on many cell 

~ ~ [ ~ d ~ r m  types, including some CD34+CD38 cells 11" 
(11, 12). In vitro SDF-1 attracts certain 
CD34+CXCR4+ cells, and in  vivo it is pro- 
duced by bone marrow stromal cells as well 
as by epithelial cells in  many organs (11, 13, 
14). Mice that lack SDF-1 or do not express 
CXCR4 exhibit manv defects. including the 

Antl Antl Antl Anti Antl 
CD34 CXCR4 SDF-1 CD34 CXCR4 

Fie. 1. Effect of antibodies to CXCR4 and c 
6 - 1  on engraftment of NODISCID 
bone marrow (BM) by human CD34' 
cells. (A) (Panel a) Human cord blood 
CD34' cells (6) treated with two alter- 
native antibodies to CXCR4 or with anti- 
CD34 as a control were transplanted into 
mice. Alternatively, anti-SDF-1 was coin- 
jected with the cells and reinjected 24 
hours later. After 2 weeks human progen- 
itor cells were quantified in semi-solid 
media assays (5). The following cell types 

15 
la, 1 9 b  T I 

CT SDF-1 PMA CT- CT+ SDF-1 PMA CT SDF-1 

were counted: c0 lon~- formi6~ uni~~granulocytelmacrophage (CFU-GM) (white bars), blast- 
forming unit-erythroid (BFU-E) (dashed bars), and multilineage colony (CFU-CEMM) (striped 
bars). Data are average t- SE (*P < 0.01, as determined by paired Student's t test) of three 
experiments. (Panel b) Human bone marrow (black bars) or mobilized peripheral blood 
(stippled bars) CD34' cells were treated with the indicated antibodies and transplanted into 
NODISCID mice, and total human progenitors were quantified after 1 month as for panel a. (B) 
Antibodies to CXCR4 were injected at the indicated times after transplantation of NODISCID 
mice with cord blood CD34+ cells. Control cells were incubated with anti-CD34. After 2 weeks, 
bone marrow was assayed by Southern blot for human DNA with a human-specific a satellite 
probe (5). (C) Cord blood CD34- cells were either not treated (CT) or treated for 24 hours with 
SDF-1 or PMA. (Panel a) CXCR4 surface expression of CD34' cells. (Panel b) Transwell 
migration assay (73) of untreated cells without SDF-1 (CT-) or with SDF-1 (CT+), and 
migration to  SDF-1 of treated cells. (Panel c) The percent of human cells in NODISCID mice 
1 month after transplantation was determined by FACS analysis with antibodies to  human 
CD45. Data are average t- SE (*P < 0.01) of three experiments. 

Fig. 2. SDF-1 induces A 
the mi ration of 
SRU. (A! (Panel a) 
Transwell migration 
assay with CD34+ 
cord blood (C), bone 
marrow (B), or mobi- 
lized peripheral blood 
(MB) cells (73, 74). 2 la 

CT, migration without 
SDF-1. SDF-1 migrat- 
ing (M) and nonmi- 
grating (NM) cells 
were assayed for pro- 
genitors (panel b) or transplanted into NOD1 
SClD or P,-microglobulin knockout NODISCID 
mice (3 X 104cells per mouse) (panel c) (20, 
23). The percent of human cells was quantified 
as in Fig. lC, panel c. Data are average + SD of 
11 (panel a) or 3 experiments (panel b), or aver- 
age f SE of three experiments (panel c) (*P < 
0.01). (Panels CB and BM) SDF-1 preferentially 
induces migration of CD34+CD38-"OWCXCR4+ 

v ,  8 

cells. Surface expression of CD38 on cord blood N M M  CD34 CD45 
(panel CB) and bone marrow (panel BM) CD34+ 
cells was analyzed by flow cytometry on SDF-1 migrating (M) or nonmigrating (NM) cells. R 
gates CD34+/CD38- cells. (B) Sorted cord blood CD34+CD38-"Ow cells, (Panel a) SDF-1 
migrating (M) or nonmigrating (NM) cells were transplanted into NODISCID mice (3 X 104cells 
per mouse). After 6 weeks, percent of engraftment was quantified as in Fig. lC, panel c. Data 
are average + SE (*P < 0.01) of three experiments. Phenotype analysis of engrafted M and NM 
cells. Numbers indicate percent of human cells. (Panels Ma and Mb) The presence of human 
lymphoid CD45+CD19+ pre-B cells (panel Ma) and progenitors for human CD45+CD56+ 
natural killer cells (panel Mb) is shown. 

u 

absence o f  both lymphoid and myeloid herna- 
topoiesis in the fetal bone marrow (10, IS). 
Overexpression o f  human CD4 and CXCR4 
receptors on murine CD4' T cells led to 
enhanced homing o f  these cells to the murine 
bone marrow (16). 

To examine the i n  vivo role o f  SDF-1 and 
its receptor CXCR4 in migration and repopu- 
lation by  human SRCs, we treated CD34+- 
enriched cord blood cells either with two 
different antibodies to CXCR4 or with con- 
trol antibodies to CD34 (anti-CD34) before 
transplantation o f  NODISCID mice (Fig. lA,  
panel a). Only anti-CXCR4 reduced engraft- 
ment. Similar treatment o f  human CD34+- 
enriched cells from mobilized peripheral 
blood or adult bone marrow also resulted in 
inhibition o f  engraftment (Fig. 1 4  panel b). 
Antibodies to SDF-I coinjected with human 
CD34+ cord blood cells and readministered 
after 24 hours significantly reduced the level 
o f  engraftment (Fig. 1 A, panel a). The fmt 24 
hours were critical to the engrafbnent pro- 
cess. Antibodies administered intraperitone- 
ally 30 min after transplantation blocked en- 
grafhnent (Fig. 1B). Antibodies administered 
24 hours later reduced engraftment less effec- 
tively and when administered 4 days after 
transplantation were completely ineffective 
(Fig. 1B) (1 7). 

The effects o f  SDF-1 desensitization and 
CXCR4 down-regulation on the ability o f  
human CD34+ cells to migrate and engraft 
NODISCID mice were further studied. 
SDF-1 and phorbol esters [phorbol 12-myris- 
tate 13-acetate (PMA)] cause internalization 
and down-regulation o f  CXCR4 surface ex- 
pression on human CD4+ T cells (18). Cord 
blood CD34+ cells were incubated overnight 
with high doses o f  SDF-1. Cells were subse- 
quently washed and tested for CXCR4 ex- 
pression and migration to SDF-1 in a trans- 
well assay. Treatment o f  CD34' cells with 
SDF-1 or PMA reduced CXCR4 cell surface 
expression (Fig. lC, panel a) and abolished 
the migration o f  CD34+ cells in response to 
SDF-1 (Fig. lC, panel b) (19). Prolonged 
treatment o f  CD34+ cells with SDF-1 signif- 
icantly blocked the engraftment o f  transplant- 
ed NODISCID mice (Fig. IC, panel c). Thus, 
SDF-1 probably affects SRC engraftment by  
mediating chemotaxis to the bone marrow, 
linking migration to SDF-1 in vitro to human 
stem cell function in vivo. 

The migration potential o f  human CD34+ 
cells from cord blood, bone marrow, or mo- 
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bilized peripheral blood was tested in vitro in 
a transwell assay. Consistent with previous 
studies (13),  20 to 25% of cord blood and 
bone marrow CD34+ cells migrated in re- 
sponse to a chemotactic gradient of SDF-1 in 
all donors tested (Fig. 2A, panel a). Migration 
of mobilized peripheral blood CD34+ cells 
from multiple donors in response to SDF-1 
was variable (between 8 to 60%), suggesting 
the involvement of SDF-1 in the mobiliza- 
tion process (Fig. 2A, panel a). The migrat- 
ing and nonmigrating CD34+ cell popula- 
tions did not differ in the incidence of 
progenitor cells, as determined by in vitro 
colony assays (Fig. 2A, panel b); however, 
the engraftment potential of the migrating 
and nonmigrating CD34+ cells was differ- 
ent. Equal numbers of migrating (M) and 
nonmigrating (NM) CD34+ cells were 
washed and transplanted into NODISCID 
or NODISCID P, microglobulin knockout 
mice (20). Whereas mice transplanted with 
nonmigrating cells were poorly engrafted, 
mice transplanted with migrating cells were 
significantly better engrafted (Fig. 2A, pan- 
el c). The low concentrations of SDF-1 and 
the'limited exposure time caused only a 
transient decrease of CXCR4 expression 
that did not prevent engraftment. These 
results are further evidence for the link 
between in vitro motility to SDF-1 and in 
vivo stem cell function. 

Although only 20 to 25% of cord blood 
CD34+ cells migrated toward SDF-1, this 
population contained a significantly higher per- 
centage of primitive CD34+CD38- cells 
than did nonmigrating cells (Fig. 2A, panel 
CB). In CD34+ cells from bone marrow, the 
proportion of immature cD34+CD38-"0~ 
cells migrating to SDF- 1 was larger than in cord 
blood (Fig. 2A, panel BM). Nevertheless, most 
cord blood CD34+CD38- cells (60%) did 
not migrate to SDF-1, demonstrating that 
CD34+CD38- cells are a heterogeneous 
population composed mostly of nonmigrating 
cells. Sorted CD34+CD38-/'0w cord blood 
cells from different donors were evaluated for 
their ability to migrate toward a chemotactic 
gradient of SDF-1 in vitro on the basis of 
surface CXCR4 expression and for their con- 
tent of SRCs in vivo. Only 26% (27%) of the 
CD34+CD38-"Ow cells migrated to a gradi- 
ent of SDF-1 in the transwell assay. Trans- 
plantation of migrating CXCR4+ cells into 
NODISCID mice resulted in high levels of 
multilineage engraftment (Fig. 2B). This was 
reflected in the engraftment of primitive 
CD34+ CD38- cells (Fig. 2B, panel M) and 
lymphoid (Fig. 2B, panels Ma and Mb), and 
myeloid colony-forming cells. In contrast, 
little engrahent  was observed with nonrni- 
grating CXCR4-/'"" cells (Fig. 2B, panel 
NM). Thus, the CD34+CD38-/IowCXCR4+ 
migrating cell population representing less 
than one-third of all CD34+CD38-"Ow cells 

engrafts the murine bone marrow with SRCs. 
Kim and Broxmeyer have demonstrated that 

stem cell factor (SCF) attracts CD34+ cells, 
increases their motility, and synergizes with 
SDF- 1, increasing migration to both cytokines 
in vitro (21). Unexpectedly, prolonged (24- to 
48-hour) stimulation of mobilized peripheral 
blood CD34+ cells with SCF resulted in in- 
creased CXCR4 expression (Fig. 3A), en- 
hanced migration toward SDF-1 (Fig. 3B), and 
enhanced engraftrnent potential dependent on 
the exposure time to SCF (Fig. 3C). Engraft- 
ment potential was similarly increased when 
only half the cell number was injected after 40 

hours of SCF treatment, compared with 16 
hours of exposure or untreated cells transplant- 
ed at time 0 (Fig. 3D). Thus, enhanced CXCR4- 
dependent migration to SDF-1 was accompa- 
nied by an increase in the SRC fraction. Incu- 
bation of SCF-stimulated, mobilized peripheral 
blood CD34+ cells with anti-CXCR4 prevent- 
ed e n w e n t  (Fig. 3C). Sorted CD34+- 
CD38-A0wCXCR4-"0w cord blood cells that 
did not migrate toward SDF-1 were either 
transplanted or treated with SCF for 48 
hours. Whereas nontreated cells had low 
engraftment efficiency (Fig. 4A), SCF 
treatment resulted in increased migration 

A e 

% 
.o 

5 -6a[E g - C - 
8 = 4 
0 ? .- m m 

-d 

m - a 
W l  

$ 

0 Q6-49 40 0 h6-40-9 40 CXCR4(FL-2' Time (hrs) + x ~  cr Tlme (hrs) + s c ~  ;,A?;$T 

Fig. 3. SCF potentiates CXCR4 expression, cell migration, and SRC engraftment. (A) Mobilized 
peripheral blood CD34+ cells stained with control antibody (curve a) or with anti-CXCR4 before 
(curve b) or after (curve c) 40 hours of treatment with SCF. (B) SDF-1 transwell migration of 
untreated (0), SCF-treated (16 and 40 hours), or control cells cultured for 40 hours without SCF 
(CT). Data are average 2 SE of three experiments. (C) Percent of engraftment in NODISCID mice 
transplanted with 2 X lo5 cells before (0) or after 16 or 40 hours of exposure to  SCF and 40 hours 
of exposure to  SCF followed by incubation with anti-CXCR4 (+ anti CXCR4). Control cells (CT) as 
in (B). Percent of engraftment was quantified as in Fig. IC, panel c. Data are average 2 SE (*P < 
0.01, SCF 40 hours versus 0 hours, SCF+anti-CXCR4, and CT 40 hours) of three mice per treatment, 
in a representative experiment. (D) Exposure times of mobilized peripheral blood CD34+ to  SCF as 
in (C). At time 0 and after 16 hours 1 X lo5 cells per mouse were transplanted, and after 40 hours 
0.5 X 10' cells per mouse were transplanted. Human engraftment was quantified after 1 month 
by Southern blot analysis. 

" I  1 

NM M +SCF CD34 1st 2nd Ist2nd CXCR4(FL-2) "- d 4b CXCRI(FL-2) 
BM Transplantalion Time (hr) 

Fig. 4. Increase in SRG and of stem cell self-renewal by up-regulation of CXCR4 expression. (A) Sorted 
CD34+CD38-/10W cord blood cells migrating toward SDF-1 were transplanted into NODISCID mice 
(3 X lo4 cells per mouse) (M). Nonmigrating cells were either injected directly (NM) or treated with SCF 
for 48 hours and then injected (+SCF). After 6 weeks engraftment levels were quantified as in Fig. IC, 
panel c. Data in the left panel are average 2 SE (*P < 0.01) of four experiments. (0) Bone marrow cells 
from mice transplanted 4 to 6 weeks before with human cord blood CD34+ cells in panels a and b were 
retransplanted untreated (2nd in panel a) or after SCF and 11-6 treatment for 48 hours (panel b) into 
secondary P,-microglobulin knockout NODISCID mice. Data in panels a and b are the average 2 SE of 
four experiments (panel a, *P < 0.01,lst versus 2nd; **P < 0.05,Znd in panel b versus 2nd in panel 
a). (Panel c) Human CXCR4 expression on cord blood cells from transplanted mice immediately labeled 
(solid) or after 48 hours treatment with SCF and 11-6 (open). (Panel d) SDF-1 migration of cord blood 
cells from the marrow of transplanted mice before and.aftertreatment with SCF and 11-6 for 48 hours. 
Data in Dane1 d are the average of tri~licates in a re~resentative ex~eriment. ICI Cord blood CD34' cells 
were stkned with control a;tibody'(curve a) or ahbody to  C X ~ R ~  after a &-hour exposure to  SCF 
(curve b) or SCF and IL-6 (curve c). Percent of engraftment in (A) and (B) was quantified as in Fig. IC, 
panel c. 
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toward SDF-1 and efficient engraftment by 
converted CD34'CD38p"0wCXCR4' cells, 
properties that were similar to those of the 
original migrating fraction (M) (Fig. 4A). 

Self-renewal of stein cells can only be 
determined by their ability to also repopulate 
secondary transplanted recipients with high 
numbers of both myeloid and lymphoid cells. 
Consistent with previous studies, secondary 
transplanted mice that received untreated hu- 
man cells showed little engraftment (Fig. 4B, 
panel a) (22). Human interleukin-6 (IL-6) 
synergizing with SCF induced high levels of 
CXCR4 expression on CD34' cord blood 
cells (Fig. 4C). Incubation of bone marrow 
cells from primaly transplanted mice with 
SCF and IL-6 for 48 hours resulted in up- 
regulation of surface CXCR4 expression 
(Fig. 4B, panel c) and increased migration of 
human progenitor cells to SDF-1 in vitro 
(Fig. 4B, panel d). Transplantation of similar 
numbers of human cells from the bone mar- 
row of primaly transplanted mice after treat- 
ment with these cytokines resulted in higher 
engraftment levels in secondary transplanted 
mice compared with mice transplanted with 
untreated cells (Fig. 4B, panel b versus panel 
a). Thus, by up-regulating surface CXCR4 
expression on primitive cells, the population 
of self-renewing CD34'CD38p"0w SRC 
stem cells could be increased. 

Our data provide evidence that CXCR4- 
dependent'migration to SDF-1 is essential for 
human stem cell function in NOD!'SCID 
mice. We characterized SRCs further as 
CD34+CD38p"0wCXCR4f stem cells and 
showed that C D ~ ~ ' C D ~ ~ ~ " ~ ~ C X C R ~ ~ " ~ "  
cells can be converted into functional 
CXCR4' stem cells by cytokine treatment. 
This suggests that migration to SDF-1 is as- 
sociated with localization of stem cells in the 
bone marrow, permitting differentiating cells 
with reduced migration levels to exit into the 
blood circulation. In conclusion, our findings 
define human CD38'OUCXCR4+ cells as 
stem cells endowed with migration and re- 
population potential and provide insights into 
human stem cell biology. 
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CD3- and CD28-Dependent 
lnduction of PDE7 Required for 

T Cell Activation 
Linsong Li,' Cassian Yee,' Joseph A. Beavo'" 

Costimulation of both the CD3 and CD28 receptors is essential for T cell 
activation. lnduction of adenosine 3',5'-monophosphate (CAMP)-specific phos- 
phodiesterase-7 (PDE7) was found t o  be a consequence of such costimulation. 
Increased PDE7 in T cells correlated with decreased CAMP, increased interleu- 
kin-2 expression, and increased proliferation. Selectively reducing PDE7 ex- 
pression with a PDE7 antisense oligonucleotide inhibited T cell proliferation; 
inhibition was reversed by blocking the CAMP signaling pathways that operate 
through CAMP-dependent protein kinase (PKA). Thus, PDE7 induction and con- 
sequent suppression of PKA activity is required for T cell activation, and inhi- 
bition of PDE7 could be an approach t o  treating T cell-dependent disorders. 

Activation of peripheral T cells in vivo by an 
antigen-presenting cell is a result of the en- 
gagement of both the T cell receptor-CD3 
complex (TCR-CD3) and the CD28 costimu- 
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latory receptor. When both receptors are oc- 
cupied by their appropriate ligands, T cells 
are stimulated to proliferate and produce in- 
terleukin-2 (IL-2), whereas occupation of the 
T cell receptor alone favors T cell anergy or 
apoptosis (I). Occupation of the CD28 recep- 
tor alone appears to have no obvious effect on 
T cells; nevertheless, CD28 costimulation is 
required for full activation of CD4 T helper 
cells, if not all T cells (2). Why is CD28 
costimulation required for T cell activation? 
One possible reason has been suggested by 
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