
gomerization would provide a platform for the 
formation of larger protein complexes. 

SAM domain interactions in other proteins 
are energetically favorable and may therefore 
mediate the formation of stable complexes in 
the cell that resemble the polymeric structure 
described for the EphB2 SAM domain. Indeed, 
the PcG proteins forin large multiprotein com- 
plexes. SAM domains froin the PcG proteins 
are relatively promiscuous in their interactions. 
suggesting that such oligomers could contain a 
variety of SAM domains. If so, a wide array of 
binding pockets could be created between SAM 
domains, m~lltiplying the potential complexity 
of the surface for specific interactions with 
other proteins. Though not yet observed, Eph 
receptors could also form heterogeneous recep- 
tor con~plexes and potentially trigger a wider 
variety of signaling cascades. It is known that 
their ligands, the ephrins, can bind to multiple 
receptor isofoims and could therefore mediate 
hetero-oligomeric receptor foilnation (32). 
Similar combinatorial mechanisms are used by 
other cell surface receptors (33). 

SAM domains are a diverse family of 
protein modules involved in inany biological 
processes. As a result, their functional roles 
may vary and alternate oligomerization 
mechanisms may be used in different con- 
texts. The EuhB2-SAM domain structure de- 
scribed here provides a structural foundation 
for uncovering the functional roles of this 
important protein interaction module (35).  
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Store-Operated ca2+ Channel in 
Jurkat T Lymphocytes 
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In T lymphocytes, a store-operated calcium ion (Ca2+) entry mechanism 
termed the calcium release-activated Ca2+ channel (CRAC channel) un- 
derlies the sustained or oscillatory intracellular calcium concentration signal 
required for interleukin-2 gene expression and cell proliferation. The use of 
sodium ions as a current carrier enabled single-channel recordings of CRAC 
channels during activation, inactivation, and blockade of current in  the 
presence of divalent cations. A large conductance of 36 t o  40 picosiemens 
indicates that  100 t o  400 CRAC channels are present i n  T lymphocytes. 

Calcium influx is activated by the depletion lymphocytes, a specific type of store-operated 
of calcium ions from intracellular stores in channel, the CRAC channel, supports the in- 
many electrically inexcitable cells (I). In T tracellular calcium concentration signal that 

leads to lymphocyte activation (2) .  CRAC 
channels are highly selective for calcium ions 
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under physiological conditions (3)  and have a 
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of  California, Irvine, CA 92697, USA. by fluctuation analysis to be 24 f S in 100 mM 
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mail: mcahalan@uci.edu too low to be resolved at the single-channel 
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level. CRAC channels, like voltage-depen- 
dent Ca2+ channels, are permeable to mono- 
valent cations (including organic cations up 
to 6 A in diameter) when the concentration of 
extracellular divalent ions is reduced (5-7). 

To detect the activity of single CRAC chan- 
nels, we lowered the concentration of external 
divalent cations to the micromolar range to 
enable Nat to serve as the charge camer, elim- 
mated Mg2+ from the pipette solution to pre- 
vent inacti\~ation of the monovalent current (a, 
and measured current over a range of potentials 
to -120 mV during whole-cell recording (8).  
CRAC channels were activated either by pas- 
sive Ca2+ store depletion with the Ca2+ chela- 
tor 1,2-bi~(2-aminophenoxy)ethane-~V~V~V'.~V'- 
tetraacetic acid (BAPTA) or by store depletion 
in response to added inositol 1.4,s-hisphos- 
phate (IP,). When carrying either Ca2+ or Nat 
current. CRAC channels opened with a similar 
biphasic time course during passive store de- 
pletion initiated by whole-cell dialysis, but 
macroscopic whole-cell Nat currents were typ- 
ically 40 times as large (Fig. 1, A and B). 
Current-voltage (I-V) relations revealed weak 
inward rectification of the current with a very 
positive reversal potential for the Ca2+ current 
and a reversal potential near 0 mV for the Nat 
current through CRAC channels (Fig. 1. C and 
D). The initial activation of Na+ current was 
composed of discrete current steps, with a 
succession of identical steps leading to the 
macroscopic current (Fig. 1E). The steps are 
multiples of a unitary current of 4.6 pA at -120 
mV. corresponding to a conductance of 38 pS. 
Single-channel cuirents obseived duiing volt- 
age-ramp stimuli exhibited the same reversal 
potential and weakly rectifying I-V shape as 
those of the macroscopic current (Fig. IF). 
Dialysis with 10 pM IP, more rapidly elicited 
the same 36 to 40 pS single-channel activity 
(9). 

Single channels at the onset of CRAC 
channel activation initially exhibited very 
brief openings before suddenly stabilizing in 
the open configuration (Fig. 2. A to C). In an 
examination of 800 data segments (sweeps). 
each lasting 0.2 s. from 20 cells during which 
120 channels began to conduct, the vast ma- 
jority of single-channel events occurred in 
equal-sized increments, consistent with uni- 
tary increases in the number of conducting 
channels rather than a gradual increase in 
their open probability Po during the activation 
of CRAC channels. Of thousands of single- 
channel events, 10 were initially twice the 
amplitude of the single-channel events be- 
cause two channels appeared to activate si- 
multaneously within the resolution of the 
measurement (1 kHz), larger amplitudes were 
never observed. Brief closures from the open 
state were voltage-dependent; the duration of 
these closures increased with depolarization 
from 3 ? 1 ms at -120 mV to 10 ? 5 ms at 
-60 mV (n = 3 cells). This voltage depen- 

dence may contribute to the inwardly rectify- 
ing shape of the I-V relation. At -120 mV, % 
was estimated to be 0.94 2 0.04 (rl  = 41 
sweeps recorded at the time of a single con- 
ducting channel in four cells). Longer clo- 
sures caused fluctuations in the number of 
conducting channels, but the progressive ap- 
pearance of new single-channel events led to 
peak illacroscopic currents that varied from 
447 to 1539 pA in 45 cells, corresponding to 
100 to 360 channels per cell, with an average 
surface density of 0.36 channels square per1 
micrometer. 

With internal Mg2+ present, moilovalent 
current through CRAC channels inactivates 
slowly over several tens of seconds after the 
removal of external divalent ions (5-7). The 
acti\~ation of monovalent CRAC cuirents oc- 
culred with a similar time course with or with- 

out internal Mg2+ present, and similar single- 
channel events were obseived (Fig. 2, D to F). 
but cuirent densities were one-tenth those when 
Mg2+ was absent in the pipette solution: this 
suggested that about 90% of the available 
CRAC channels were inactivated (10). When 
external divalent cations were removed shortly 
after the onset of CRAC channel activation, the 
time course of inactivation was revealed as a 
progressive closure of single channels (Fig. 3). 
Evaluated at -120 mV, the initial 40- to 45-pA 
current represented the activity of eight or nine 
ion channels, and successive traces showed a 
stepwise decline in current, finally stabilizing at 
4.9 PA, representing the activity of one ion 
channel. These results demonstrate that changes 
in the number of conducting channels underlie 
both the activation and inactivation processes. 

We used chanilel blockers to confirm that 
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Fig. 1. Divalent and monovalent current through a store-operated Ca2+ channel in  Jurkat cells. (A) 
Activation o f  Ca2+ current through CRAC channels. Naf  methane sulfonate external solution 
contained 20 m M  Ca2+; pipette solution was Mg2+-free. Voltage ramp stimuli, which increased 
f rom -120 t o  +40 m V  in 200 ms, were delivered every second, and the  current amplitude a t  -120 
m V  during each ramp was plotted a t  varying t imes after the initiation o f  whole-cell recording. (B) 
Activation o f  Na f  current through CRAC channels. The NaC methane sulfonate external solution 
contained HEDTA t o  chelate inorganic divalent cations; pipette solution was Mg2+-free. Voltage 
ramp stimuli  and currents are plotted as in  (A). The bar indicates measurements enlarged in (E). (C) 
Ca2+ current showing inward rectification. The inward current is carried by Ca2+, and the outward 
current above +40 m V  is carried by Cst. (D) Naf  current f rom the  cell shown in (B). Inward current 
is carried by NaC and outward current by CsC. (E) Magnification o f  the first 70 s o f  the  init ial  phase 
o f  current activation. Horizontal lines are multiples o f  4.6 PA. (F) Current traces during voltage 
ramps f rom the  cell shown i n  (B) and (E), showing single-channel activi ty initially w i t h  one channel 
and later w i t h  three ion channels activated. 
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Fig. 3. Inactivation o f  Nat  current through 
CRAC channels in  single-channel steps, early in  
the activation o f  CRAC channels. Pipette solu- 
t i on  contained Mg2+. (A) External solution ex- 
change f rom 20  m M  Ca2+ t o  Na+ methane 
sulfonate containing HEDTA. (B) Representa- 
t ive current traces f rom the cell shown in (A). 

shape and were blocked by the same polyvalent 
cations. Extracellular Mg2+ rapidly blocked 
and was released from the channel in discrete 
events, with concentration and voltage depen- 
dence similar to those of macroscopic currents, 
indicating a binding site deep within the electric 
field of the pore. With internal Mg2+ present, 
inactivation of Nat current proceeded as single 
channels progressively closed. We conclude 
that the single-channel activity described re- 
flects monovalent current through single CRAC 

Time (s) Time (s) channels These observations support sugges- 
tions that CRAC is an ion channel and not a 
Pump (3-7). 

The single-channel conductance of 36 to 40 
pS for the CRAC channel canying Nat is 1500 
times the estimated 24 fS  for the Ca2+ current 
through CRAC channels, but is close to the 
conductance of Nat through single L-type volt- 
age-gated Ca2+ channels (11). CRAC channels 
and voltage-gated Ca2+ channels share several 

Fig. 2. Decreased amplitude o f  the macroscopic current, but  n o t  the  single-channel current, in the 
presence o f  internal Mg2+. CRAC channels were activated by passive depletion o f  internal stores, 
and currents during 200-ms voltage steps f rom 0 t o  -120 m V  were recorded every second. (A) 
HEDTA-containing external solution, Mg2+-free pipette solution. The bar indicates measurements 
enlarged in  (C). (B) Four current traces showing the  activi ty o f  one t o  five ion channels f rom the 
cell shown in (A). Lines are equally spaced multiples o f  4.3 PA. Numbers t o  the r ight indicate the 
number o f  open channels. (C) Detail o f  the  first 70 s, showing clustering o f  openings a t  particular 
current values f rom the  cell shown in (A). (D) Activation o f  Na+ current w i t h  HEDTA-containing 
external solution and Mg2+-containing pipette solution. The bar indicates the first 100 s, shown in 
greater detai l  in  (F). (E) Four current traces f rom the  cell shown in (D), showing the activi ty o f  one 
t o  five ion channels. (F) Detail o f  (D) illustrating discrete openings a t  particular current values. properties of ion permeation, including a com- 

mon pore dimension of 6 A and selectivity for 
Ca2+ that depends on selective binding and 
interactions between Ca2+ ions at the selectiv- 
ity filter (7, 12). 111 both channel types, the 
smaller conductance of Ca2+ compared to that 
of Nat results from a much higher affmity of 
Ca2+ ions for the selectivity filter, which limits 
throughput but guarantees selectivity for the 
divalent ion. 

From the measured macroscopic and 
single-channel currents and the average P,, 

the observed steps of current represent Nat 
current through single CRAC channels. 
Ca2+ , M g ,  Ni2+, and Gd3+, all of which 
inhibit current through CRAC channels, 
blocked the monovalent current detected 

external Mg2+ was voltage-dependent, as re- 
flected in both the ensemble average of sin- 
gle-channel records and macroscopic I-V 
curves (Fig. 4, E and F). 

We observed single-channel activity of a 
store-operated Ca2+ channel as a succession of 
long-duration, independent single-channel 
events during activation of the macroscopic 
current. Macroscopic and single-channel Nat 
currents had the same reversal potential and I-V 

from single channels (9). Single channels 
exhibited long-duration openings that were 
interrupted by rapid blocking and unblocking 
events when external Mg2+ was buffered to 3 
KM (Fig. 4, A to D). Blockade of channels by 
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Fig. 4. Decrease in the open time and blockade of monovalent current in the presence of 
extracellular Mg2+. External solution contained HEDTA; pipette solution was Mg2+-free. (A and B) 
Single-channel activity during a voltage ramp from -120 to f 4 0  mV and during 200-ms steps from 
0 to -120 mV. (C and D) Block of single channels induced by buffering Mg2+ to 3 p,M. (E) Ensemble 
average of 12 current traces containing one ion channel with and without external 3 p,M Mg2++. 
Note the voltage-dependent block. (F) Macroscopic ramp current before and after addition of 3 p,M 
Mg2+. Currents were recorded from the same cell as shown in (A), (C), and (E), after complete 
activation of CRAC channels. 

we conclude that there are 100 to 400 
CRAC channels per cell, fewer than a pre- 
vious estimate of more than 10,000 per cell 
derived from an analysis of conductance 
fluctuations (13). During the activation 
process, single CRAC channels opened 
abruptly and rapidly stabilized to a state of 
very high Po, indicating an underlying 
mechanism that switches the single chan- 
nels from a nonconducting state to a state in 
which Po is near unity. The identification of 
unitary CRAC channel currents provides a 
single-channel signature for identifying 
candidate genes and may facilitate the 
study of CRAC channel regulation. 
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currents when divalents are withdrawn and then 
Ca2+ reapplied, a ratio that averaged 25 (7). This 
approach assumes a constant number of open chan- 
nels immediately before and after addition of Ca2+ 
and yields an estimate of 1.6 pS for the CRAC channel 
carrying Ca2' at a concentration of 20 mM. 
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