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merely a device that oscillates; a "clock" repre- 
sents "[alny instrument for measuring or indi- 
cating time" and a "pacemaker" is defined as a 
process or substance that "regulates" the timing 
of other events (19). Although the capacity to 
oscillate is a widely distributed property, the 
restoration of circadian rhythmicity in SCN- 
lesioned, arrhythmic hosts by immortalized 
SCN cells but not NIH 3T3 mouse fibroblasts 
implies that only oscillators derived from the 
SCN act as pacemakers and have the capability 
to impose their rhythmicity on mammalian be- 
havior. How these oscillators in the SCN dive 
rhythms in behavior is unclear at this point, but 
there is increasing evidence indicating that the 
SCN secretes a difhsible factor that at least in 
part contributes to this rhythmic efflux (20). 
Perhaps one of these factors is a neurotrophin 
such as BDNF or NT-3, based on their rhyth- 
mic expression in immortalized SCN cells and 
the SCN in vivo (14). 
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Horizontal Propagation of 
Visual Activity in the Synaptic 

Integration Field of Area 17 
Neurons 

Vincent Bringuier,* Frederic Chavane, Larry Glaeser, 
Yves Fr6gnacP 

The receptive field of a visual neuron is classically defined as the region of space 
(or retina) where a visual stimulus evokes a change in its firing activity. At the 
cortical level, a challenging issue concerns the roles of feedforward, local 
recurrent, intracortical, and cortico-cortical feedback connectivity in receptive 
field properties. lntracellular recordings in cat area 17 showed that the visually 
evoked synaptic integration field extends over a much larger area than that 
established on the basis of spike activity. Synaptic depolarizing responses to 
stimuli flashed at increasing distances from the center of the receptive field 
decreased in strength, whereas their onset latency increased. These findings 
suggest that subthreshold responses in the unresponsive region surrounding the 
classical discharge field result from the integration of visual activation waves 
spread by slowly conducting horizontal axons within primary visual cortex. 

The average size of the minimal discharge area centralis) when it is mapped with a small 
field (MDF) in area 17 neurons is -2" of spot or slit of light (1, 2). The strength of the 
visual angle (for the representation near the spiking response results from the amplifica- 

tion of the feedforward thalamo-cortical d r i ~ e  
by a local recurrent intracortical loop that 
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center-surround interactions are thought to be 
mediated by long-range connections, which 
originate within area 17 (6), or from higher 
cortical areas (7). In vivo intracellular record- 
ing techniques allow the analysis of sub- 
threshold synaptic inputs and their retinal 
origin (8, 9). They were applied here to dis- 
sect out the different synaptic contributions 
potentially involved in binding information 
originating from distant parts of the visual 
field. 

We performed intracellular sharp and 
patch recordings in the primary visual cortex 
of cat (IO), using three mapping protocols, 
which evoked different degrees of spatial and 
temporal summation (11). First, brief punc- 
tate stimuli of positive or negative contrast 
were sequentially flashed in random positions 
in the visual field [two-dimensional (2D) im- 
pulse-like input]. Second, optimally oriented 
bars whose length matched that of the MDF 
length were flashed for longer duration in 
random positions across the receptive field 
width. Third, sinusoidal luminance gratings 
were presented through large co-centered an- 
nular windows, resulting in a high level of 
input summation. The stimulus-locked anal- 
ysis of the membrane potential responses of 66 
cells showed that visual cortical neurons were 
synaptically activated by stimuli well beyond 
the boundaries of their discharge field. Figure 
1A illustrates a typical 2D impulse response 
field, with a compact MDF (2" by 1.6'), 
surrounded by a homogeneous subthreshold 
depolarizing field (D-field) (3.2' by 3.2'). 
Figure 1B illustrates, for another cell, the 
MDF (1.8') and the subthreshold field (9'; 
D-field alone: 6.3') when stimulating with 
long bars. Figure 1C illustrates the case of 

subthreshold depolarizing responses evoked 
by annular gratings even when separated 
from the MDF center by more than 11.3". 

Two parameters characterizing the spatial 
sensitivity profile of the synaptic integration 
field were extracted at the population level: 
mean spatial attenuation gradient and mean 
spatial extent of the subthreshold responses. 
Because in most cells at rest impulse-like 
input evoked mainly depolarizations, the 
strength of the significant depolarizing re- 
sponses for the three mapping protocols is 
plotted in Fig. 2 as a function of the distance 
between the actual stimulus position and the 
location in the visual field eliciting the max- 
imal spike discharge (12). The spatial sensi- 
tivity envelope of the D-field was generally 
co-centered with the MDF and declined with 
relative eccentricity. D-fields mapped with 
random 2D impulse-like inputs were charac- 
terized for each cell by a linear (mean 
correlation coefficient ( r )  = -0.83), steep 
(-24.3 ? 15.9% per degree) decrease of the 
postsynaptic response strength, at increasing 
distances from the MDF center (Fig. 2B). The 
same analysis for long bars gave a similar 
gradient estimate (-23.7 + 16.7% per de- 
gree; mean (r)  = -0.82, Fig. 2C). In contrast, 
the slope for gratings was significantly atten- 
uated when compared with the 2D impulse- 
like input (- 16.8 + 13.4% per degree in Fig. 
2D; P < 0.05). 

We estimated the boundary of the D-field 
by the angular distance between the extreme 
locations where the linear fits of each flank of 
the spatial sensitivity hill (measured along the 
MDF width or length axis, or both) intercepts 
the threshold level of significant response. 
The mean D-field outer diameter was 6.6 2 

Fig. 1. Mapping the A B C 
synaptic integration 
field. The different pro- 
tocols (A to  C) are 
symbolized in the up- I 
per row, with the pie- u 

ferred orientation of -- A.u-- - -  

set the to  recorded vertical cell by b i n  con- , - 
vention. For each graph, 
synaptic responses elic- 
iting spikes and defin- 
ing the MDF extent -- 
are illustrated in bold, f r*_-:zf f :I 
Shaded background d--4-dw--w 

delineates the region I A 1 
(or regions) where-the 
significant subthreshold depolarizing responses are found. The stimulus onset is indicated by a black 
triangle in (0) and (C). Scale bars are 5 mV (vertical) and 100 ms (horizontal). (A) Two-dimensional 
impulse-like input: ON responses (averaged over 36 trials) to  light patches (0.4' by 0.4', 50 ms 
duration) in a unimodal simple cell. (0) Optimally oriented bars: averaged responses (15 trials) to 
dark bars (O.gO by 3.g0, 1 s duration) in a complex cell in 10 contiguous positions. (C) Sinusoidal 
gratings: averaged ON responses (30 trials) to  a stationary optimally oriented grating in a simple 
cell. The grating is counterphased at 2 Hz in the MDF (region I), or regions co-centered around it 
(2: NEAR periphery, 3: FAR periphery). Cells (A) and (0) were recorded in adult cats, and cell (C) in 
a 15-week-old kitten. Resting potential [dotted line in (0) and (C)] was -51 mV (A), -65 mV (B), 
and -62 mV (C). Retinal eccentricities of the discharge field centers were 1.3O (A), 3.9" (B), and 5.7" 
I r \  

4.3' (n = 26) for 2D impulse-like input, 
slightly less than that observed with long bars 
(8.5 + 4.3"; n = 20). When gratings were 
used, because of the internal symmetry of the 
annular stimulus, only a lower bound esti- 
mate of the D-field boundary could be ex- 
tracted (half width of the inner rectangle); 
this value was 14.6 + 8.6' (n = 19). Thus. 
independently of its precise shape, the extent 

BcQnblday-UDFornCr C) 

Fig. 2. Spatial profile of the depolarizing field. 
The visually evoked strength of the depolarizing 
response is normalized relative to  that ob- 
sewed at the Location of the MDF (dotted 
contour eliciting the maximal discharge (cir- 
cle). (A. 1 Color-coded map of the response 
strength, obtained for the cell shown in Figs. 
lA, 3A, and 4A. Black pixels indicate the ab- 
sence of significant responses. Horizontal scale 
bar, 2 O .  (B to  D) Each individual profile repre- 
sents for a given cell the change in response 
strength across the width or Length of the RF, 
expressed as a function of the eccentricity of 
the stimulus from the MDF center. These dif- 
ferent profiles have been superimposed togeth- 
er on the same graph, each corresponding t o  a 
particular mappin protocol [(B) 2D impulse- 
like input (n = 34 :  (C) flashed bars (n = 21); 
(D) flashed (n = 19) or moving (n = 2) sinu- 
soidal luminance gratings]. The average MDF 
extent and its SD are indicated by thick and 
thin horizontal line segments, respectively. In 
the case of annular stimuli, the abscissa corre- 
sponds to  the distance between the center of 
the MDF and the inner radius of the annulus. 
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of the D-field increased beyond that of the 
MDF (2.74 + 2.3" for impulse-like input and 
2.5 + 1.9" for long bars) by a factor depen- 
dent on the mapping stimulus (X2.5 for im- 
pulse-like input, X3.3 for long bars, X5.6 for 
gratings). These results show the existence of 
a large field of depolarizing responses whose 
detection is favored by spatiotemporal synap- 
tic summation. This conclusion differs from 
the classical suppressive role attributed to 
surrounding regions of the cortical discharge 
field (5, 13). It may also explain the addition- 
al excitatory drive provided by surrounding 
regions for bipartite center and surround 
stimulus configurations (14). 

To measure quantitatively the topographic 
arrangement of the responsive areas, while 
distinguishing between spikes, excitatory, 
and inhibitory events (IS), we devised a 
method adapted from the reverse correlation 
(RC) technique (16). This method allows us 
to assess which pixels in the visual field 
elicited a significant response at a preset con- 
fidence level (99%) (17). The occurrence 
times of several types of voltage events were 
detected in the filtered membrane potential 
signal, and each of the corresponding time- 
series was correlated with the random stimu- 
lus sequence. Three different receptive field 
maps were established for each neuron, based 
on the detection of spikes (MDF), of sub- 
threshold depolarizing events (D-fields), and 
of hyperpolarizing events (H-fields) (Fig. 3). 
This analysis estimated the mean equivalent 

diameter of MDFs as 3.3 +- 1.3" and that of 
the D-field as 4.4 + 2.4" (by compacting all 
responsive domains into a single disk of the 
same total area). In 30% of cases, the internal 
structure of the D-field was patchy, with one 
to four additional islands of subthreshold de- 
polarizing responses, detached from the one 
co-centered with the MDF (Fig. 3C). Patchi- 
ness was even more apparent in the H-fields 
whose extent was more limited (equivalent 
diameter: 2 + lo). Thus, the topological 
union of the MDF, D-field, and H-field, that 
is, the synaptic integration field, on average 
covered an area (equivalent diameter: 5 + 
2.4") that was four times as large as that of 
the MDF. This result, obtained when the cell 
is at rest, can only give a lower bound esti- 
mate of the maximal extent of recruitable 
synaptic input, the hnctional activation of 
which also depends on the voltage at which 
the cell is held. 

A second source of information that could 
help to trace the origin of subthreshold re- 
sponses is their onset latency (18). A strong 
correlation was observed in most cells be- 
tween the latencies of the depolarizing re- 
sponse and the eccentricity of the flashed 
stimulus relative to the center of the MDF, 
giving an isotropic latency basin shape. The 
center of this basin corresponding to the 
shortest latencies was typically near the re- 
gion of maximum discharge (19). We ex- 
plored the hypothesis that the peripheral sub- 
threshold depolarizing responses are relayed 

Fig. 3. Reverse corre- MDF D - Fldd 
lation maps of the 
synaptic integration A 
field. All color-coded 
maps (red: ON; blue: 
OFF) show, for all 
statistically significant 
pixels (P < 0.01), the k 
z score of the opti- I 
mized reverse correla- 
tion count (77). The B 
zones of overlap be- 
tween ON and OFF 
responses are illus- 
trated by generating 
a transparency color 
map mixing linearly 
ON and OFF color c 
codes. Black pixels in- 
dicate the absence of 
significant responses. 
The three columns il- 
lustrate the MDF (left), 
the D-Field (center), 
and the H-field (right) "o 
for three different cells -I recorded in adult cor- 
tex. The z,,, scores 
(MDF, D-Field, H-Field) are, respectively, 17.5, 14, and 6.5 (A); 32, 6.5, and 3.5 (B); and 10,8.5, and 
4 (C). (A) The same cell as in Figs. IA, 2A, and 4A, for which the RC method reveals a much larger 
integration field than stimulus-locked averaging. (B) Three-zone simple cell (OFF-ON-OFF ). (C) 
Unimodal ON simple cell. Restin potential was -51 mV (A), -55 mV (B), and -59 mV (C). The 
stimulus sizes were 0.4' by 0.4' ?A), 1.6' by 0.B (B), and 1.89' by 1.39' (C). Retinal eccentricities 
of the discharge field centers were 1.3' (A), 5.1' (B), and 3.4O (C). 

by horizontal connections within area 17 (6, 
20). According to this framework, the linear 
relation observed between the latency of the 
postsynaptic evoked depolarization and the 
stimulus eccentricity relative to the MDF 
center results from a constant propagation 
velocity of action potentials along intracorti- 
cal axons. To test this prediction, we convert- 
ed the distance separating two loci of activa- 
tion in the visual field into a distance in the 
cortex. We used an average cortical magnifi- 
cation factor of 1 mm in the cortex for lo in 
retinal space (21). The apparent speed of 

Fig. 4. Basin of latencies of subthreshold depo- 
larizing synaptic responses. (A) Color-coded 
map of the absolute latency of the depolarizing 
response, obtained for the same cell and pro- 
tocol as in Figs. IA, ZA, and 3A. Black pixels 
indicate the absence of significant change in 
the onset slope of the postsynaptic response. In 
(B) and (C), the graphs represent changes in 
latency measured across the width or length of 
the RF and expressed as a function of the 
eccentricity of the stimulus from the latency 
basin center (78), for two mapping protocols 
[(B) 2D-impulse-like input (n = 37); (C) flashed 
bars (n = 27)]. (D) Distributions of the ASHP 
values calculated from the slopes of the basins 
of latency illustrated in (6) (green) and (C) 
(blue). 
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horizontal propagation (ASHP) of the hypo- 
thetical cortical wave of activity (distance in 
the cortical projection mapidifference in vi- 
sual latencies of the synaptic responses) can 
be derived directly from the inverse of the 
slope estimates of the latency basins. Distri- 
butions of the ASHP values (Fig. 4D) for 
both 2D impulse-like stimuli and long-bar 
stimulations peak at 0.1 m/s and are indistin- 
guishable (unpaired t test, P > 0.55). The 

realized by the cortical cell may be described 
by the summation of propagated inputs orig- 
inating from distant intracortical sources in a 
spatiotemporal coordinate system centered on 
its minimal discharge field. A straightforward 
prediction of this model is that synaptic sum- 
mation may be optimized by adjusting the 
relative latencies of activation evoked through 
the feedfonvard pathway and the peripheral 
intracortical connectivity. This could explain 

sample) and complex cells (38%), both types of 
receptive fields were pooled. 

12. Estimates of the ratio of D-field size over MDF size 
are based on similar statistical tests performed at the 
subthreshold and spiking level. The MDF was deter- 
mined as the distance between the positions that 
elicited a significant increase of the spike discharge 
(one-tailed t test, P < 0.01) when compared wi th the 
shuffled discharge elicited for a similar duration pe- 
riod. The visually evoked subthreshold response 
strength was measured by the integral of the depo- 
Larizing component of the stimulus-locked waveform 
over a 300-ms period starting at the stimulus onset, 

cortical dynamics extrapolated here match the boosting of cortical responses by bipartite a" compared wi th that obtained f rom similar dura- 
tions of shuffled activity ( t  test, P < 0.01). A Linear 

the slow velocity of activation waves moni- stimuli composed by low-contrast center and analysis, relating response strength with the eccen- 
tored in vivo with optical imaging techniques high-contrast surround features (14). This tricitv from the MDF center, was restricted t o  the - - 
along the supragranular layer plane [o. i to also suggests that the processing of new vi- regions where significant responses were evoked, and 

did not  take into account "silent" regions. For each 0.25 mis (22)l. Moreover, the intracellular sual information arising in the center of the cell, the spatial sensitivity hill profile was fitted by 
subthreshold responses. evoked when stimu- classical discharge field could be highly in- the best  air of Lines (least-mean-sauare criteria). - - .  

lating the "silent" surround of the discharge fluenced by contextual information that was whose intersection with'the threshold'level of signii- 

field with annular gratings to the exclusion of present a few tens of milliseconds earlier in 
~ ~ ~ ~ l a r r ~ ~ ~ ~ ~ ~ b ~ ~ ~ ~ ~ " , l ~ ~ e L ~ u t e r  diameter the 

the discharge field center and its immediate the periphery. 13. C. Blakemore and E. A. Tobin, Exp. Brain Res. 15, 439 
periphery, were selective to orientation (23), 
which strongly suggests a cortical origin. Our 
electrophysiologica1 estimates also match in 
vitro measurements of horizontal action po- 
tential propagation in rat and cat visual cortex 
at physiological temperature (24). Thus, our 
data suggest the dominant participation of a 
single type of connectivity responsible for the 
subthreshold peripheral responses, namely, 
that subserved by intracortical horizontal 
axons. 

Other pathways could potentially be in- 
voked to explain lagged peripheral responses. 
Diverging thalamocortical fibers are unlikely 
candidates because of their limited lateral 
spread and their very high conduction veloc- 
ity (25). Feedback projections from extrastri- 
ate cortical areas, or from precortical struc- 
tures where MDFs are large, could explain 
large synaptic integration fields in area 17 (7, 
26). But these pathways do not account in a 
simple way for the linear dependency of la- 
tency on stimulus position with respect to the 
MDF center. Polysynaptic horizontal propa- 
gation within area 17, or in subcortical struc- 
tures, would require firing at every step of 
synaptic integration and therefore the unsub- 
stantiated existence of very large MDFs (27). 

The main findings of this study are three- 
fold: (i) Spatial sensitivity at the subthreshold 
level decreases linearly from the center to the 
periphery of the discharge field. (ii) The ex- 
tent of the synaptic integration fields of pri- 
m a g  visual cortical neurons spans a much 
larger window of visual space than the MDF. 
(iii) The latency of depolarizing responses 
increases linearly from the MDF center to- 
ward its surround. Cortical spatiotemporal 
dynamics may be viewed in two complemen- 
tary ways: A focal visual stimulus evokes in 
cortex a radial wave of activity that spreads in 
the plane of cortical layers at a constant 
velocity over a radius of more than 10 mm. 
This is in agreement with recent optical im- 
aging of the cortical point spread function 
(22, 28). Reciprocally, functional integration 
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All four members of the family of pentopyranosyl-(2'+4') oligonucleotide 
systems that contain P-ribo-, p-xylo-, a-lyxo-, or a-arabinopyranosyl units as 
repeating sugar building blocks are found to be much stronger Watson-Crick 
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gest of all and in fact belongs to the strongest oligonucleotide base-pairing 
systems known. Whatever the chemical determinants by which nature selected 
RNA as a genetic system, maximization of base-pairing strengths within the 
domain of pentose-derived oligonucleotide systems was not the critical se- 
lection criterion. 

A chemical understanding of the criteria by 
which nature chose ribo- and deoxyribonu- 
cleic acids as genetic systems \vould consti- 
tute a central eleluent of any theory of the 
origin of the particular kind of che~nical life 
that we know today. The quest for such an 
understanding may be taken up by experi- 
ment by systematically synthesizing potential 
alternatives to the natural nucleic acids and 
comparing them with RNA with respect to 
those chemical propelties that are fuadamen- 
tal to RNA's biological function (1). For such 
an alternative to be selected for study, we 
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require it to be stlucturally derivable from a 
(CH,O),, aldosugar (71 = 6; 5; or 4) by the 
same type of potentially natural chemistry 
that allows the stlucture of RNA to be de- 
rived from ribose (2). This strategy is an 
attempt to mimic a hypothetical natural pro- 
cess that may have led to the selection of 
RNA: a process of colnbinatorial molecular 
assembly and functional selection \vithia the 
domain of sugar-based oligonucleotides. In 
principle, such an experimental etiological 
analysis of nucleic acid structure is unbiased 
with respect to the question of whether RNA 
first came into being abiotically or biotically. 

Our previous studies involving the P-hex- 
opyranosyl-(4'36') oligonucleotide family 
had shown that base pairing in allo-, altro-, 
and glucopyranosyl oligonucleotides is uni- 
formly much weaker than in RNA (3). Com- 
parison with the properties of the 2'-deoxy, 
3'-deoxy, and 2',3'-dideoxyallopyranosyl an- 
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alogs (4) demonstrated that the weaker base 
pairing is due to intrastrand steric hindrance 
in the pairing confolmation ("too many at- 
oms") (3). These findings led us to refocus 
our studies on the less bulky pentopyranosyl 
series, where it was discovered that the p-ri- 
bopyraaosyl-(2'+4') oligonucleotide sys- 
tem, the pyranosyl isomer of RNA (p-RNA), 
exhibits Watson-Crick pairing that is far 
stronger than that in RNA (5 ) .  Here we shou7 
that the same is true for the entire family of 
pentopyranosyl-(2'+4') oligonucleotide sys- 
tems that have the nucleotide base in the 
equatorial position of the pyranose chair 
(Scheme 1). 

Scheme 2 sumlnarizes the syntheses of the 
phosphoralnidite building blocks 4; 9; and 13; 
each prepared fro111 the corresponding 
nucleosides containing adenine or thymine as 
the nucleobase (6, 7). The preparation of 
oligomers in the lyxo- and xylopyranosyl 
series followed the (2'+4') strategy previ- 
ously applied in the p-RNA series (5). 111- 
versely, oligorrler synthesis in the a-arabi- 
nopyranosyl series was chosen to proceed in 
the 14'+2') direction because the axial 4'- 
hydroxyl is the least reactive to electrophilic 
derivatization among the three hydroxyl 
groups (8). 

Table 1 summarizes T,, values (the tem- 
perature at which about 50% of duplex mol- 
ecules are dissociated into single strands) and 
thermodynamic data for five different oc- 
tamer duplexes of each of the four pentopy- 
ranosyl-(2'34') oligonucleotide systems, 
determined in buffered 0.15 M sodium chlo- 
ride solution at pH 7.0 (see also Fig. 1). 
Duplex formation was further characterized 
by temperature-dependent circular dichroism 
(CD) spectroscopy (Fig. 2) as v,rell as by 
confirmation of strand stochiometry by deter- 
mination of ultraviolet (UV) mixing curves 
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