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A Tobacco Syntaxin with a Role 
in Hormonal Control of Guard 

Cell Ion Channels 
Barbara Leyman, Danny Ceelen, Francisco J. Quintero," 

Michael R. Blattt 

The plant hormone abscisic acid (ABA) regulates potassium and chloride ion 
channels at the plasma membrane of guard cells, leading to stomatal closure 
that reduces transpirational water loss from the leaf. The tobacco Nt-SYR7 gene 
encodes a syntaxin that is associated with the plasma membrane. Syntaxins and 
related SNARE proteins aid intracellularvesicle trafficking, fusion, and secretion. 
Disrupting Nt-Syrl function by cleavage with Clostridium botulinum type C 
toxin or competition with a soluble fragment of Nt-Syrl prevents potassium 
and chloride ion channel response to ABA in guard cells and implicates Nt-Syrl 
in an ABA-signaling cascade. 

The size of stoinatal guard cells in higher 
plant leaves is rapidly reversible and is cru- 
cial to maintaining the hydrated environment 
n~ithin the leaf. In dry conditions. guard cells 
respond to the holmone abscisic acid (ABA) 
to regulate plasma membrane K' and C1- 
channels which facilitate solute efflux. The 
concurrent decrease in turgor and cell ~701- 
ume closes the stomata1 pore to reduce transpi- 
rational water loss (1). Response to ABA de- 
pends on gt~anosine triphosphatases (GTPases). 
protein (de-)phospholylation, and changes in 
cytosolic-fiee Cap concentration and pH (2, 3) 
and is associated with substantial alterations in 
intracellular membrane structure in the guard 
cells (4). 

\Tie isolated elements that contribute to 
ABA signaling in vivo, adapting a strategy 
similar to that used to identify inamnlalian 
receptor and ion channel proteins (5, 6). 
Polyadenylated [poly(A)+] RNA k o m  leaves 
of drought-stressed Xicotinnn tabactrill was 
injected into X'erzopzts Ine~is  oocytes. Expres- 
sion of the Xicotinnn mRVA led to a cross- 
coupling bet~veen exogenous ABA-sensitive 
elements and the endogenous signaling path- 
Tvays of the oocyte, evidenced by activation 
of the Xeriopzts Ca2'-dependent C 1  current 
in the presence of 20 FM ABA ( 1 1  = 16; Fig. 
1A). Current activation Tvas specific to 
inRVA-injected oocytes and was obsened in 
response to ABA. but not to acetate or kine- 
tin. a plant h o n ~ ~ o n e  that stimulates cell divi- 
sion and stomatal ope~ling (1). After sucrose 
gradient kactionation of ,Vicotini~n mRNA. 
the active fraction (mean size, 1.3 Itb) was 
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used to constix~ct a cDNA library for expres- 
sion and screening. Subdivision of library 
pools yielded clones that promoted the ABA- 
evoked current and a copurifyiilg baclcground 
current with similar characteristics but inde- 
pendent of ABA. The backgrouild cu l~en t  
Tvas isolated to a single clone (Fig. 1B). After 
depleting this transcript from ,Vicotini~ci 
mRNA. 110 ABA-sensitive current was ob- 
sewed (7). indicating that the gene carried by 
the clone Tvas necessary to evoke the ABA- 
sensitive cuiTent ( 8 ) .  

Sequencing the transcript cDNA (9) re- 
vealed an open-reading kame encoding a 
syntaxin-related protein (Nt-Syrl: GenBank 
G m b e r  AFI 12863) of 300 arnino acids with 
a predicted nlolecular mass of 34.01 liD and 
an isoelectric point of 7.95. Aligninents of 
Nt-Syrl protein (I\/Iegalign, DNAstar, Madi- 
son. Wisconsin) showed similarities to the 
syntaxin-like Knolle gene product of Ai.abi- 
dopsis thrrlinrirr (38% identity) (10). human 
syntaxin-1A (23?/0 identity) (11). and the 
yeast syntaxins SSOlp and SS02p (22?/0 
identity each) (12). Syntaxins are essential 
for synaptic transmission, they coordinate 
cellular growth, and are implicated in 
vesicle trafficking in yeast. plants, and an- 
inlals (10, 13-15). Features of Nt-Syrl 
common to syntaxin proteins (Fig. 2A)  in- 
clude three donlains (HI  through H3)  Tvith 
high probabilities for fornling coiled-coil 
structures in protein-protein interactions. a 
putative membrane-spa~lning (hydropho- 
bic) domain, and an adjacent domain (with- 
in H3)  of 84% identity (92% homology) 
Tvith the epirnorphin consensus sequence 
( I  I ) .  Nt-Syrl also showed partial conser- 
vation of the three sites necessary for bind- 
ing and cleavage by CIosti.idi~~ii~ bot~1li11ztrn 
type C neurotoxin (BotWC) (16) .  Unlike 
other syntaxin proteins. Nt-Syrl harbors a 
putative EF-hand, Ca2+ -binding sequence 
and nucleotide binding site. Southern blot 

www.sciencemag.org SCIENCE VOL 283 22 JANUARY 1999 537 



R E P O R T S  

analyses using Nt-SYRl cDNA indicated a 
low number of homologous genes in the 
Nicotiana genome and yielded At-SYRl from 

Arabidopsis (GenBank number AF112864) ognition sites (16, 20). Western blot analysis 
encoding a predicted protein with an overall (21) of Nicotiana leaf microsomal proteins 
identity of 72% with Nt-Syrl (8, 17). showed that Nt-Syrl, which contains homologs 

Northern (RNA) blot and protein irnmuno- of the BotNIC-recognition sites, was cleaved by 
blot analyses showed that the Nt-SYR1 tran- BotNIC, but not by BOND toxin (Fig. 3A), 
script and translation product (34 kD) were which targets the vesicle-associated protein 
present in low abundance in leaves of well- synaptobrevin (16). Loss of BotNIC cleaved 
watered plants (Fig. 2, B and C). Virtually all fragments (30 kD) was probably related to 
Nt-Syrl was found in the 50,000g microsomal product instability and breakdown by endoge- 
pellet and, after two-phase partitioning, was nous proteases. The specificity of BotNJC ac- 
localized primarily to the plasma membrane, 
paralleling the distribution of the plasma mem- 
brane H+-adenosine triphosphatase (ATPase) 
(18). Remarkably, Nt-SYRl [and At-SYRI 
(a)] transcript levels rose transiently approx- 
imately ninefold within 30-min exposure to 
ABA and after 48 hours drought stress (n = 
3). Nt-Syrl protein showed a parallel, albeit 
delayed, transience in ABA as expected for 
de novo translation and protein accumulation. 

We explored syntaxin-related function of 
Nt-Syrl by complementation of the H440 strain 
of Saccharornyces cerevisiae, which harbors 
the lethal deletion of plasma membrane syn- 
taxin genes SSOl and SS02, and carries SSOl 
on a plasmid behind the GAL1 galactose-induc- 
ible promoter (19). The H440 strain will grow 
on galactose, but not on glucose (12). After 
transformation, constitutive expression of Nt- 
Syrl failed to rescue yeast growth on glucose 
(8). To examine Nt-Syrl function in the plant, 
we used BotNIC which disrupts secretion by 
cleavage of syntaxins containing specific rec- 

tion was indicated by the fact that cleavage was 
observed only when protein extracts were pre- 
treated with ATP, which in synaptic protein 
complexes is required to expose syntaxin 
through complex disassembly by NSF ATPase 
(22). These results, and observations of anti- 
body binding to high molecular weight bands 
(a), implicate Nt-Syrl in similar complexes in 
planta. 

We tested the effects of BotNIC and 
BotND on ABA-mediated control of guard 
cell K+ and C1- channels in Nicotiana. ABA 
treatment normally results in a 40 to 60% 
inactivation of inward-rectifying K+ channel 
current (I,,i,), a two- to fourfold stimulation 
of current through the C1- channels (I,,) and 
slowing of I,, gating (2, 23, 24). Voltage 
clamp recordings (Fig. 3B) (25) showed that 
cytosolic loading with BotNIC, but not with 
BotNID, prevented ABA action on C 1  chan- 
nel gating, and a similar loss of sensitivity to 
ABA was found for I,,, after BotN/C load- 
ing (Fig. 3C). Equivalent results wcrc ob- 

216 Epimorphin pattern A ......... ,RaLKELHQVFLDMan- ......... Nt-Syrl 
......... .......... ; E K ~ L L E L H Q V F L D ~ V ~ ' V E S Q G E Q  W o l l e  
......... .......... LENS IRELHDKFKL '.iAIILVESQGE:,I SynlA 

.......... .......... 
4 

Hydrophobic region 
......... ~ L L I I T L V W L S I Q P W - - K K .  Nt-Syrl 

I G I I V L L L I I L I V \ ~ I D I ~ F S S S .  Knol le  
.......... GCGPG SynlA 

Fig. 1. Expression cloning of Nt-SYR7. (A) Voltage 3C0 
clamp recordings of Xenopos oocytes expressing Nt-Syl 
poly(A)+ RNA from drought-stressed Nicotiana A & , H 3 .  
leaves. Current-voltage (I-V) curves from one set 
of injections (means + SE, n = 3 cells) recorded B Contr % 1 3 12 24 ------ Contr Drought 
at the end of 1-s voltage steps before (a) and - 
30 s after (0) adding 20 p,M ABA. (Inset) Currents ~~~~h~~ 1.2 kb - 
from one cell cross-referenced by symbol. Volt- 
age protocol (above): conditioning voltage, -120 
mV; test voltages (8 cycles), -180 to +60 mV. 
Scale: horizontal, 1 s; vertical, 1 pA. The ABA- 
evoked current was identified with CI- channels 
by tail current analysis (E,, = -26 mV, n = 4) (8). 
(8) Sib-selection cloning of Nt-SYR7. Nicotiana 
leaf poly(A)+ RNA was size-fractionated on a 10 
to 30% sucrose gradient. The fraction yielding the 
ABA response was used to construct a cDNA 
library in the pSPORT vector with the Superscript 
plasmid system (Gibco-BRL). DNA derived from 
pools of clones was linearized with Not I and 
transcribed in vitro with the T7 RNA polymerase. 
Xenopus oocytes were injected with this cRNA 
and assayed for ABA sensitivity. Currents before 
(left) and during (right) challenge with 20 JLM 
ABA are shown from representative oocytes in- 
jected with progressively smaller cRNA pools. 
Scale: horizontal, 1 s; vertical, 500 nA. 

Western - 

Fig. 2. Structure and expression analysis of Nt-Syrl (37). (A) Key features of Nt-Syrl include putative 
Ca2+ - (EF-hand) and nucleotide-binding (NBS) sites, partially conserved domains for recognition (*) and 
cleavage (0) by BotNIC, and putative coiled-coil domains (HI through H3). High amino acid conser- 
vation with Knolle (70) and syntaxin-1A (SynlA) (77) is found in the epimorphin domain and 
hydrophobic COOH-terminus. (8) Northem blot (above) and protein immunoblot (Westem; below) 
analyses showing transient enhancement of Nt-SYR7 transcript and protein levels by treatment with 20 
pM ABA and drought stress. Total RNA (15 pgllane) and crude protein extracts (10 pg/lane) were 
isolated from Nicotiana leaves. Ribosomal RNA was used as a loading control (8). Northern blots probed 
with full Nt-SYR7 cDNA and protein immunoblots probed with Anti-Sp2 antiserum (78). Contr, control: 
112 to 24, hours of ABA exposure; Drought, 48 hours. (C) Subcellular localization of the Nt-Syrl by 
protein immunoblot analysis of fractionated Nicotiana leaves (MM, 50,0009 microsomal membrane; 5, 
soluble fraction; PM, two-phase partitioning plasma membrane; IM, inner membrane). 
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tained in recordings from Vicia faba guard 
cells (8). 

In separate experiments we used the C- 
truncated Nt-Syrl protein Sp2 (18) to "poison" 
Nt-Syrl functioning. B y  analogy with the ac- 
tion o f  C-truncated Syntaxin-1A in secretion 
(20), we reasoned that if a protein complex with 
Nt-Syrl was necessw for A B A  signaling, add- 
ing the truncated protein-including the pro- 
tein-protein interaction domains, but lacking the 
COOH-terminal membrane anchor-might 

A Contr BotNlC BotNIC BotNlD 
+ATP += - T p A  += 
- .  .. . 

B C 
4 1 1, (normalized) I 

I C, (normalized) / 

Fig. 3. Neurotoxin BotNIC, but not BotNID, tar- 
gets Nt-Syrl and blocks ion channel response to 
ABA in Nicotiana guard cells. (A) Microsomal pro- 
tein fractions were isolated from Nicotiana 
leaves, pretreated either with or without 1 mM 
ATP, incubated with BotNlC and BotNID, sepa- 
rated by SDS-PACE (6 pgllane), and assayed by 
protein immunoblot analysis. (8) Voltage clamp 
analysis of Cl- channel response to  ABA in guard 
cells with and without BotNIC. Voltage steps 
(above): conditioning voltage (5 s), +30 mV (8); 
test voltages (6 cycles), -160 mV to +30 mV. 
Currents are from one guard cell loaded with 0.1 
pM BotNIC before (top) and 8 min after (center) 
adding 20 p,M ABA. Data from a second cell in 
ABA (bottom) is shown for comparison. No sig- 
nificant difference in current characteristics were 
observed without ABA between nonloaded cells 
and cells loaded with either toxin. Scale: vertical, 
100 pA cm-*; horizontal, 2 s. Zero current level is 
on the left. (C) Means + SE of the ABA response 
of the Cl- current (I,,; top) and inward-rectifying 
K+ current (IKei,; bottom) from nonloaded (contr) 
and BotNIC- and BotNID-loaded (0.1 pM) guard 
cells (n 2 5). Currents were taken at -200 mV 
and normalized to the corresponding measure- 
ments taken before ABA treatments. 

compete with Nt-Syrl for partners and prevent 
normal complex functioning. Voltage clamp 
records (Fig. 4A) (25) showed that current 
through the outward-rectifying K+ channels 

was enhanced two- to threefold in ABA, 
while was reduced, at -200 mV, to roughly 
25% o f  the control. A B A  also shifted the volt- 
age-sensitivity o f  I,,in (Fig. 4C), consistent 
with its Ca2+-sensitivity and A B A  action on its 
gating (2). In guard cells loaded 20 or 100 pM 
Sp2 protein IKin and I,,, showed complete 
loss o f  sensitivity to ABA, and a similar loss o f  
sensitivity was found for I,, (Fig. 4B). 

We interpret these results to indicate a 
central role for N t -Syr l  in early steps o f  
A B A  signaling and to implicate its func- 
tioning in a heteromultimeric complex wi th  
other proteins. This idea accords wi th  the 

Fig. 4. Truncated Nt-Syrl protein (Sp2) 
blocks ion channel response to  ABA in 
Nicotiana guard cells. (A) Voltage clamp 
analysis of Kf  channel response to  20 JLM 
ABA. Voltage protocol (bottom right): con- 
ditioning voltage, -100 mV; test voltages 
(16 cycles), -250 mV to +30 mV; tailing 
voltage, -100 mV. Currents are shown 
from one guard cell loaded with 20 p M  Sp2 
before (0) and 10 min after (e) adding 
ABA. Data from a second cell in ABA (A) for 
comparison show characteristic slowing of 
inward current by ABA (2). No significant 
difference in current characteristics were 
observed without ABA between nonloaded 
cells and cells loaded with Sp2. Scale: ver- 
tical, 100 pA cm-'; horizontal, 1 s. Zero 
current levels are on the left. (B) Means ? 
SE of steady-state currents before and 10 
min after adding ABA in nonloaded (Con- 
trol) and Sp2-loaded (+Sp2) cells. Data are 
for I, (open bars, down) and IK,,,, (open 
bars, 'up) and for I,, (shaded bars, down). 
Currents were recorded at -200 mV (I,,.,), 
+30 mV (I,,,,,), and -100 mV (I,,). (c) 
Steady-state current-voltage relationships 
for lKi, and I,,,, from (A) and cross-refer- 
enced by symbol showing characteristic 
shift in voltage-sensitivity for I in in ABA 
(A). (Inset) Conductances (gK,,f'of + 
Sp2 in ABA (e, A) relative to  conductances 
without ABA. 

homology o f  Nt-Syr l  to  other syntaxins, its 
presence in high-molecular weight compo- 
nents, and the action o f  Sp2 on  the A B A  
respor.2~ o f  guard cell i on  channels. The 
target .-)SNARE syntaxin takes part in a 
numbe o f  protein-protein interactions es- 
sentia. for vesicle trafficking, secretion and 
endocytosis (13, 26). Syntaxin binding 
partners at the presynaptic membrane in- 
clude SNAP-25 and the vesicle (v-)SNARE 
synaptobrevin, which form a stable ternary 
complex for vesicle fusion (13). Less is 
known o f  syntaxin function in stimulus per- 
ception, although its interaction w i th  other 
elements is l ikely to  be important for sig- 
naling (27, 28). Syntaxins do interact wi th  
other proteins that may not be related to 
secretion processes directly. Syntaxin-1A 
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copurifies with the orphaa G-proteia-cou- hell) to resolve this issue and to rain further out using anti-rabbit IgC-alkaline phosphatase conju- 

pl;d receptor CIRL (3) and iliteracts with illsights into its fimction. 
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