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Diminishing Returns from 
Mutation Supply Rate in 

Asexual Populations 
J. Arjan C. M. de Visser,"? Clifford W. Zeyl, Philip J. Cerrish, 

Jeffrey L. Blanchard, Richard E. Lenski 

Mutator genotypes with increased mutation rates may be especially important 
in microbial evolution if genetic adaptation is generally limited by the supply 
of mutations. In experimental populations of the bacterium Escherichia coli, the 
rate of evolutionary adaptation was proportional to the mutation supply rate 
only in particular circumstances of small or initially well-adapted populations. 
These experiments also demonstrate a "speed limit" on adaptive evolution in 
asexual populations, one that is independent of the mutation supply rate. 

Surveys of natural populations of pathogenic 
( I )  and commensal (2) bacteria indicate that 
more than 1% are dominated by mutator ge- 
notypes with increased mutation rates. Such 
genotypes are even more prevalent among 
populatioils of E. coli evolving in the labora- 
tory (3) and i11 certain tumors (4). Mutators 
may be favored because they produce rare 
beneficial mutatioils more often than do nor- 
mal genotypes and thereby allow a faster 
response to selection (5). But the actual rela- 
tion between inutation rates and adaptive 
evolution may be more complicated, espe- 
cially in asexual populations that are subject 
to strong effects of genetic linkage. Indeed, 
the logic that drives any empirical association 
between mutators and rapid adaptive evolu- 
tion can be reversed: Rapid adaptation to a 
novel or changing environment provides 
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more frequent opportunities for mutators to 
"hitchhike" to high frequency along with 
beneficial mutations to which they are genet- 
ically linked, even when mutators themselves 
have little effect oil the rate of adaptation (3). 

Moreover, populatioil genetic models pre- 
dict that the rate of adaptive evolution in 
asexual populations will increase proportion- 
ately ~vith inutation rate only if populations 
spend most of their time waiting for benefi- 
cial mutations (6). Otherwise, two or more 
beneficial mutations may be simultaneously 
present in different lineages within a popula- 
tion; they will interfere with one another's 
spread, and ultimately only the superior mu- 
tation prevails while all others are driven 
extinct (6,  7). Therefore, an increase in the 
supply rate of beneficial mutations might of- 

Table 1. Est imates o f  re lat ive m u t a t i o n  rates o f  
t h e  six st ra ins used i n  t h e  evo lu t ion  exper iment,  
o n  t h e  basis o f  e igh t  separate f l uc tua t ion  tests f o r  
each stra in (14). 

R e l a t ~ v e  m u t a t ~ o n  ra te  

M u t a t o r  
allele Nonadapted  Adap ted  

background background 

W i l d  t y p e  1 
mutY 3.3 
muts 34.9 
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ten be subject to diminishing rebms, as the 
extent of clonal interference increases with 
the number of beneficial mutations produced 
in an intelval. This effect can be so pro- 
nounced that the rate of adaptation reaches an 
effective "speed limit" (6). 

Consider an asexual population that is sinall 
and spends most of its time waiting for the next 
beneficial mutation. An increment in either mu- 
tation rate or population size should sholten the 
waiting time and thereby accelerate adaptive 
evolution. However, a further increase in the 
supply of beneficial mutations (because of 
changes in either parameter) should yield less 
acceleration as a consequence of more clonal 
interference (8)..'No\v consider the effect of 
starting out with a different genotype, one better 
adapted to the selective environment. This pop- 
ulation should spend more time waiting for 
beneficial m~~tations than one that is poorly 
adapted, all else equal, and thus clonal interfer- 
ence should be less important. Well-adapted 
populations may therefore experience a propor- 
tional acceleration of their adaptive evolution 
over the same range of mutation rates and 
population sizes that reveal a speed limit in 
populations founded by an inferior genotype. 

We tested these hypotheses by examining 
how mutation rate, population size, and the 
level of adaptedness affect the rate of adap- 
tive evolution in asexual populations of the 
bacterium E. coli. Forty-eight populations 
evolved for 1000 generations in a simple 
laboratory enviroilment (9). We manipulated 
initial adaptedness by using two founding 
strains: One had not previously experienced 

- 
0 200 400 600 800 1000 

Time (generations) 

Fig. 1. Fitness trajectories of wild-type and 
mutator populations, founded by the non- 
adapted strain, during experimental evolution. 
Points indicate the average fitness of four pop- 
ulations in each treatment relative to the cor- 
responding ancestor; error bars show standard 
errors. Circles are wild type, squares mutY, tri- 
angles mutS. (A) Small effective population size 
(= 6.6 X lo5).  (B) Large effective population 
size (= 3.3 X lo7). 

the selective environment, whereas the other 
had already adapted to that environment for 
10,000 generations (10). We manipulated 
mutation rates by moving repair-deficient 
112utY and nzzctS alleles into repair-proficient 
genetic backgrounds (11). We manipulated 
effective population size by valying the bot- 
tleneck during propagation of the evolving 
populations (12). The rate of adaptive evolu- 
tion was determined by measuring changes in 
competitive fitness relative to the correspond- 
ing ancestral strain and in the same simple 
environment (13). Fluctuation tests (14) indi- 
cate a moderate increase in mutation rate for 
the nmtY strains and a greater increase for the 
nwtS strains (Table 1). Each combination of 
mutation rate (wild-type, nzutY, or nzutS), ef- 
fective population size (6.6 X lo5 or 3.3 X 

lo7), and evolutionary histoly (nonadapted or 
adapted) was replicated fourfold. 

Fitness increased under each combination 
of mutation rate and population size in the 
nonadapted strains (Fig. 1). For each popula- 
tion, we calculated its time-averaged rate of 
adaptation from the regression of fitness 
agalnst time. We then regressed these rates 
against the product of relative mutation rate 
and effective population size, which equals 
the mutation supply rate, using two different 
models (Fig. 2A). The first is a linear model, 
in which the rate of adaptation is directly 
proportional to the mutation supply rate. The 
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Fig. 2. Effect of mutation supply rate on rate of 
adaptive evolution. Mutation supply rate is the 
product of mutation rate and effective popula- 
tion size; values are expressed relative to the 
treatment with the lowest rate and are shown 
on a log-transformed scale to spread the treat- 
ments along the x axis (statistical regressions 
use untransformed values). Open symbols are 
small populations, filled symbols large popula- 
tions; circles are wild type, squares mutY, tri- 
angles mutS. (A) Populations founded by non- 
adapted strains. The curve is a hyperbolic re- 
gression, which fits the data better than a linear 
regression (P < 0.0001). (B) Populations found- 
ed by previously adapted strains. The curve is a 
linear regression (P = 0.0234), which appears 
exponential because of the logarithmic scale. A 
hyperbolic regression provides no significant 
improvement (P = 0.4565). 

second is a rectangular hyperbola, such that 
the rate of adaptation is subject to an upper 
limit because of clonal interference. The J) 

intercept is fixed at 0 in both models, because 
an asexual population with no mutations can- 
not adapt genetically. The linear illode1 iadi- 
cates that the rate of adaptation increases with 
the mutation supply rate (Fl,23 = 7.47, P = 

0.01 18). But the additional degree of freedom 
required for the hyperbolic model provides a 
substantial improvement over the linear mod- 
el (F,,,, = 397.53, P < 0.0001) (15). Our 
experiment thus demonstrates a speed limit 
on adaptive evolution in asexual populations, 
which was predicted by a population genetic 
model with clonal interference (6). 

This model also predicts that the speed 
limit should be shifted to much higher values 
of the mutation supply rate for a founding 
strain that is so well-adapted that it spends 
most of its time waiting for further beneficial 
mutations. The rate of adaptation was much 
slower for the 24 populations founded by the 
adapted strain (Fig. 2B) than for those found- 
ed by the nonadapted strain (Fig. 2A). Even 
so, the rate of adaptation in these well-adapt- 
ed populations increased significantly with 
mutation supply rate, on the basis of linear 
regression with the J) intercept held at 0 (Fl,23 
= 5.90, P = 0.0234). But the hyperbolic 
model provides no statistical improvement 
for the well-adapted populations (F,,,, = 

0.57, P = 0.4565), in contrast to the strong 
improvement for the nonadapted populations. 
Thus, the contrasting predictions for the ef- 
fects of the mutation supply rate on the rate of 
adaptation in well-adapted versus poorly 
adapted populations are supported. 

Our findings have three evolutionary im- 
plications. First, higher mutation rates need 
not accelerate the pace of evolutionary adap- 
tation in asexual populations. Acceleration 
proportional to the mutation rate occurs only 
in limited circumstances, such as small effec- 
tive population size, where an evolving pop- 
ulation spends most of the time waiting for 
beneficial mutations (I 6). This is particularly 
relevant to bacterial pathogens that may ex- 
perience severe population bottlenecks dur- 
ing colonization of the host (1 7). Second, 
mutators are common in asexual populations 
under conditions of rapid adaptive evolution 
because such coilditions provide numerous 
opportunities for mutators to hitchhike to 
high fi-equency wit11 beneficial mutations to 
which they are linked (3, 5) .  Mutators need 
not-and often will not-substantially accel- 
erate adaptive evolution. Third, clonal inter- 
ference imposes a speed limit on adaptive 
evolution in asexual populations, because 
two or more beneficial mutations that arise in 
different lineages cannot be combined into 
the same lineage. An advantage of sex is that 
it allo\vs beneficial mutations to be combined 
into the same lineage, minimizing clonal in- 
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terfeieilce and lellloving the speed lilnlt on 
adaptwe evolution that collstlalils asexual 
pop~~latloils (7. 18. 19) 
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