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The function of the central cannabinoid receptor (CB,) was investigated by 
invalidating its gene. Mutant mice did not respond to  cannabinoid drugs, dem- 
onstrating the exclusive role of the CB, receptor in mediating analgesia, re- 
inforcement, hypothermia, hypolocomotion, and hypotension. The acute ef- 
fects of opiates were unaffected, but the reinforcing properties of morphine and 
the severity of the withdrawal syndrome were strongly reduced. These obser- 
vations suggest that the CB, receptor is involved in the motivational properties 
of opiates and in the development of physical dependence and extend the 
concept of an interconnected role of CB, and opiate receptors in the brain areas 
mediating addictive behavior. 

Marijuana and other derivatives of Cannabis 
sativa have been used for centuries for their 
therapeutic and mood-altering properties and 
are the most widely used recreational drugs 
today (I). The active compounds of Canna- 
bis, including A9-tetrahydrocannabinol (A9- 
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THC): as well as the endogenous cannabinoid 
anandamide, act through two G protein-cou- 
pled receptor subtypes. The CB, receptor is 
abundant in the central and peripheral nervous 
systems but is also expressed in several periph- 
eral organs, whereas CB, receptor expression is 
essentially restricted to lymphoid organs (2). 
We investigated the in vivo function of the CB, 
receptor by invalidating its gene in a mouse 
model (3). Northern (RNA) blotting demon- 
strated the absence of CB, transcripts in brain 
and testis fiom knockout (CB;'-) mice; and 
binding assays confirmed the absence of bind- 
ing sites for cannabinoid ligands (4). Histology 
of brain and other organs, body weight moni- 
tored over a 6-month period, and blood iono- 
gram and cell count appeared to be unaffected 
by CB, gene inactivation. 

The consequences of CB, receptor inacti- 
vation on spontaneous behavior were ana- 
lyzed. A moderate increase in locomotor ac- 
tivity (5) was observed in CB; mice when 
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newly exposed to the arena (1 19% of con- 
trols; P < 0.001. unpaired t~i.0-tailed Stu- 
dent's t test, 77 = SO), but not after an habit- 

receptor antagonist SR14 1,7 16A precipitated 
behavioral manifestations of abstinence in 
wild-type mice but not in mutant mice given 
long-term treatment with A'-THC (Fig. IF). 
These results demonstrate that the main phar- 
nlacological responses to A9-THC, as well as 
the addictive properties of cannabinoids, are 
indeed mediated mostly. if not exclusively, 
by the CB, receptor. 

Cannabinoids have been reported to elicit 
hypotension and bradycardia through periph- 
eral CB, receptors (11). Basal blood pressure 

and heart rate were measured in conscious 
mice (12) but were not significantly modi- 
fied, suggesting that endogenous cannabi- 
noids do not exert a tonic control on these 
parameters or that other systems may com- 
pensate for the absence of the CB, receptor. 
Both anandamide and WIN55,212-2 promot- 
ed a sustained decrease in blood pressure and 
heart rate in CB?' mice. with a biphasic 
response to anandamide (Fig. 2): in agree- 
ment with previous reports (11). No signifi- 
cant hypotensive effect of either drug was 

uation period. Increased explorato~y behavior 
was also found under the more stressful con- 
ditions of an open field ( P  < 0.01, t test, n = 

15) (5) and in the spontaneous alternation test 
(total nun~ber of visits to the arms: CBF- ,  
47.2 i 1.6; CB,-. 58.9 i 2.2; P < 0.01, r 
test, n = 15) (6). Both groups of animals 
exhibited a rapid habituation to the open-field 
test (5) .  However, the time spent in exploring 
unknown objects placed in the field was sig- 
nificantly increased for the mutant mice 
(CB: +. 0.66 i 0.3 s; CB;'-, 5.33 i 1.5 s; 
P < 0.01, t t e 3  , P I  = 15). Furthermore. a 
decrease in spontaneous alternation (6) was 
observed for the mutant mice in the Y maze 
(CB: -, 61.4 i 1.8%; CB;'-, 53.7 i 1.9%; 
P < 0.01, t test, n = 15). In the elevated plus 
maze (5), the number of entries and time 

A Hot plate: jumping 6 Tail-Immersion C Locomotor activity D Rectal temperature E Self-administration 
WIN55,212-2 

spent in the open amls were unaffected. Tak- 
en together, the data suggest that CB;- mice 
present a mild impaimlent in the adaptation 
to new environment that could be related to 
changes in short-tenn illenloiy 01. attention 
(or both). 

The spontaneous, nociceptive threshold 
(7) of wild-type and mutant naive mice was 
similar [not signif7cant (KS), t test] in the 
hot-plate (jumping behavior: CBT '. 52.0 I 
3.8 s; CB; , 46.6 I 4.5 s; i l  = 10). tail- 
immersion (CB; ', 0.97 i- 0.08 s; CB; -. 
1.04 I 0.06 s; iz = 10). writhing (CB: -. 
35.2 i- 1.9: CB; . 34.6 I 2.0: n = 10). 
and tail-pressure tests (CB: --. 7.0 i 0.2 s: 
CB; . 7.2 i- 0.2 s: n = 20). These obser- 
vations suggest that the endogenous activa- 

' Rearing Sniffing Wet dog shakes Paw tremor Ptosis Piloerection 
8- 

Veh~cle  THC Vehtce THC 

Penile licking Mastication 

V e h ~ c e  THC Venlcle THC Verlcle THC Vehicle THC 

Hunched posture Ataxia 
9 8 -----, 

Body tremor 

V e r ~ c l e  THC 
tion of the CB, receptor is not crucial for 
the control of pain or that other endogenous 

Veh~cle  THC Veh~c le  THC V e h ~ c e  THC Veh cle THC 

systems might compensate for the absence 
of this receptor (or both). 

The role of the CB, receptor in the central 
effects of call~labinoids was investigated by 
measuring the response of CB: -- and CB; - 

mice to 1'-THC in different assays (Fig. 1). 
The antinociceptive properties of 1'-THC 
were not observed for mutant mice in the 

Fig. 1. Central effects of cannabinoids on CB;" (0, R) and CB;/- (., a) mice. For (A) to (D), an 
intraperitoneal injection of A9-THC (or vehicle alone) was made 20 min before measurements. (A) 
Latency for escape jumping in the hot-plate test (n = 10). (B) Latency for tail withdrawal in the 
tail-immersion test (n = 10). (C )  Spontaneous activity in locomotor activity boxes (number of 
photocell counts within 10 min; n = 10). (D) Rectal temperature (n = 10). (E) Self-administration 
of WIN55,212-2 (9). Injection (inj) of agonist or vehicle to active (0, .) and passive (R, a) mice 
was coupled to the nose-poke behavior of the active mouse (n = 8 for WIN55,212-2 and 4 for 
vehicle). (F) Signs reflecting A9THC withdrawal (10) were monitored (n = 5 to IS). The statistical 
significance [t test for (A) to (D) and (F) and Neuman-Keuls test for (E)] was measured between 
genotypes and against vehicle for drug-treated groups. Error bars: SEM. hot-plate test and were strongly reduced in 

the tail-immersion test. in which a slight an- 
tinociceptive effect was observed for the 
highest dose (Fig. 1, 4 and B), possibly in 

Fig. 2. Cardiovascular Mean blood oressure Heart rate 
effects of cannabi- 
noids on CBT1' (0, 
g)  and CB;/- ( 0 ,  
.) mice (12). Mean 
blood pressure (MBP) 
and heart rate were 
monitored for 60 min 
after administration 
of WIN55,212-2 (0.25 
mg/kg; 0, .), anand- 
amide (2 mglkg; C, O), 
or vehicle (15). The 

line with the recent demonstration that CB, 
receptors nlay regulate pain initiation at sites 
of tissue injury ( 8 ) .  Other classical effects of 
19-THC, namely, the reduction of horizontal 
locomotor activity ( 5 )  and the decrease of 
rectal temperature, were observed in wild- 
type animals but not in mutant mice (Fig. 1, C 
and D). In an intravenous self-administration 
model ( 9 ) ,  \VIh-55.212-2 was not self-admin- 
istered by CB; mice. in contrast to wild- 
type animals (Fig. 1E). Dependence induced 
by 1'-THC administratio~l was also investi- 
gated in mutant nlice (10). The selective CB, 

transient drop in heart 
rate after injection in Time after injection (min) Time after injection (min) 

CB;/- mice was also 
observed after vehicle injection only. n = 9 to 11 for each group. Error bars: SEM. bpm, beats per minute. 
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observed after their ad~iiillistration to CB; 
mice, deinonstrating that the CB, receptor is 
solely responsible for the cardiovascular ef- 
fects of cannabinoids, including the two com- 
ponents of the response to anandainide. 

AII interaction between tlie opioid and 
cannabinoid systems has been proposed for 
the control of nociceptive responses (13). 
Opiate antagonists such as llaloxone have 
been reported to inhibit callliabinoid agonist- 
induced dopamilie release in tlie iiucleus ac- 
cunibens (14). Therefore, morphine-induced 
antinociception and hypothermia, as well as 
its reinforcing properties and the develop- 

ment of tolera~ice and physical dependence. 
were investigated in mutant mice. The an- 
tinociceptive effects of morphine in the tail- 
i~iiliiersio~i (1.7) and tlie hot-plate (Fig. 3A) 
tests (7). as well as its hypothermic effects. 
were not modifyed i11 CB; - mice. Furtlier- 
more. long-te~nl morphine treatment ( I  6 )  in- 
duced tlie development of tolerance to 111or- 
plii~ie anti~iociceptive effects in the hot-plate 
(Fig. 3A) and tail-immersion (15) tests in 
both genotypes. I11 an intravenous self-ad- 
niinistratioli model (9. 17).  tlie nu~iiber of 
nose pokes leading to ~ i io~yh ine  administra- 
tion was much lower for CB; mice as 

A Morphine analgesia Morphine self-administration 
C Conditioning 

(hot plate, jumping) place aversion 

Short term Long  term 

M o r p h ~ n e  Morphine 

Fig. 3. Central effects of opiates on CB;lt (0, R) and CB;/ mice (W, a ) .  (A) Hot-plate test 
(jumping) after injection of morphine (or vehicle) to nai've mice (short term) or mice treated for 
6 days with morphine (long term), showing the development of tolerance (n = 8 to 19). Similar 
effects were obtained for the licking behavior, as well as in the tail-immersion test (15). (B) 
Self-administration of morphine (9). Injection of morphine or vehicle to active (C, W) and passive 
(R, a )  mice was controlled by nose pokes of the active mouse, and the number of nose pokes was 
recorded. n = 6 to 10 per group. (C) Place aversion test, with the K agonist U-50,488H (24). n = 
10 per group. The statistical significance [t test for (A) and (C) and Newman-Keuls test for (B)] was 
measured between genotypes and against vehicle for drug-treated groups. Error bars: SEM. 

Jumping Wet dog shakes Paw tremor Sniffing Body tremor 

Vehc le  iulorph Vehcle Morph Vehc le  Morph V e h c e  Morph Velxc'e Morph 

Ptosis Diarrhea Teeth chattering Body weight Global withdrawal score 
-- 

- -  
c' 

Veh.cle lvlorph V e h c e  Morph Veh.ce Morph 

Veh cle Morph 

compared with CB: ' liiice (Fig. 3B). sug- 
gesting a reduction of tlie rei~iforcing effects 
of the drug. The behavioral expressio~i of 
naloxone-precipitated morphi~ie withdrawal 
(18). shown to be critically dependelit on the 
p-opioid receptor (19). was also significantly 
decreased (seven of nine signs evaluated) in 
liiutant mice (Fig. 4), suggesting that CB, 
receptors are required for the developnient of 
physical depelidelice or to obtain a complete 
nianifestatioli of the somatic signs of opiate 
withdrawal. These findings are particularly 
inlportant when one takes into account the 
proposed iliteractioli between ca~inabilio~ds 
and opioid dependence (14. 20). \vhicli could 
i~iflue~ice the establislinient of opiate addic- 
tion. Interestingly. our results show a disso- 
c~ation between tlie development of opiate 
tolerance (unchanged) and de1,endence (de- 
creased) in mutant mice, confirming that 
these two processes can be i~idepelidelitly 
developed (21). The specific interactions be- 
tween K-opioid and cannabilioid receptors 
(22) \Yere exarnilled \vith tlie selective K-opi- 
oid ago~iist L-50,488H (23). A~ltinociceptive 
responses and liypoloco~i~otion induced by 
short-te~m U-50,488H adliiillistration were 
si~iiilar in mutant and wild-type mice. How- 
ever. tlie dysphoric effects of this K agonist in 
the conditioning place aversion paradig111 
(24) \Yere obser\.ed in wild-type mice but not 
in  nuta ants (Fig. 3C). Therefore, CB, recep- 
tors seem to be in\.olved in the behavioral 
nianifestatiolls of molpliine physical depen- 
dence and the dysplioric properties of K ago- 
liists but not in the acute effects induced by 
opioids in antinociception. body temperature, 
and locomotion. Camiabinoid apo~lists have 
been considered as therapeutics for their an- 
tiemetic, analgesic, anticonvulsant. and in- 
traocular hypotensi\e effects ( I ) .  Lon, 0-term 
CB , antagonist administration could also be 
considered for preventilig the development of 
depe~ide~lce 011 opiates aiid possibly other 
addictive drugs 
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Diminishing Returns from 
Mutation Supply Rate in 

Asexual Populations 
J. Arjan C. M. de Visser,"? Clifford W. Zeyl, Philip J. Cerrish, 

Jeffrey L. Blanchard, Richard E. Lenski 

Mutator genotypes with increased mutation rates may be especially important 
in microbial evolution if genetic adaptation is generally limited by the supply 
of mutations. In experimental populations of the bacterium Escherichia coli, the 
rate of evolutionary adaptation was proportional to the mutation supply rate 
only in particular circumstances of small or initially well-adapted populations. 
These experiments also demonstrate a "speed limit" on adaptive evolution in 
asexual populations, one that is independent of the mutation supply rate. 

Surveys of natural populations of pathogenic 
( I )  and commensal (2) bacteria indicate that 
more than 1% are dominated by mutator ge- 
notypes with increased mutation rates. Such 
genotypes are even more prevalent among 
populatioils of E. coli evolving in the labora- 
tory (3) and i11 certain tumors (4). Mutators 
may be favored because they produce rare 
beneficial mutatioils more often than do nor- 
mal genotypes and thereby allow a faster 
response to selection (5). But the actual rela- 
tion between inutation rates and adaptive 
evolution may be more complicated, espe- 
cially in asexual populations that are subject 
to strong effects of genetic linkage. Indeed, 
the logic that drives any empirical association 
between mutators and rapid adaptive evolu- 
tion can be reversed: Rapid adaptation to a 
novel or changing environment provides 
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more frequent opportunities for mutators to 
"hitchhike" to high frequency along with 
beneficial mutations to which they are genet- 
ically linked, even when mutators themselves 
have little effect oil the rate of adaptation (3). 

Moreover, populatioil genetic models pre- 
dict that the rate of adaptive evolution in 
asexual populations will increase proportion- 
ately ~vith inutation rate only if populations 
spend most of their time waiting for benefi- 
cial mutations (6). Otherwise, two or more 
beneficial mutations may be simultaneously 
present in different lineages within a popula- 
tion; they will interfere with one another's 
spread, and ultimately only the superior mu- 
tation prevails while all others are driven 
extinct (6,  7). Therefore, an increase in the 
supply rate of beneficial mutations might of- 

Table 1. Est imates o f  re lat ive m u t a t i o n  rates o f  
t h e  six st ra ins used i n  t h e  evo lu t ion  exper iment,  
o n  t h e  basis o f  e igh t  separate f l uc tua t ion  tests f o r  
each stra in (14). 

R e l a t ~ v e  m u t a t ~ o n  ra te  

M u t a t o r  
allele Nonadapted  Adap ted  

background background 

W i l d  t y p e  1 
mutY 3.3 
muts 34.9 
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