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Grassland Vegetation Changes 
and Nocturnal Global Warming 

Richard D. Alward,* James K. Detling, Daniel G. Milchunas 

Global minimum temperatures (T,,,) are increasing faster than maximum 
temperatures, but the ecological consequences of this are largely unexplored. 
Long-term data sets from the shortgrass steppe were used t o  identify corre- 
lations between T,,, and several vegetation variables. This ecosystem is po- 
tentially sensitive t o  increases in  T,,,. Most notably, increased spring T,,, was 
correlated wi th  decreased net primary production by the dominant C, grass 
(Bouteloua gracilis) and wi th  increased abundance and production by exotic and 
native C, forbs. Reductions in  6. gracilis may make this system more vulnerable 
t o  invasion by exotic species and less tolerant of drought and grazing. 

There is general consensus that there is an 
anthropogenic warming signal in the long- 
term climate record (1).  Over land, this is 
primarily due to average annual minimum 
temperatures ( T M I N )  having increased at 
twice the rate o f  maximum temperatures 
(T,,,) (1,  2). At the global scale, these 
increases in T M I N  are related to increases in 
global cloudiness (1, 3). Experiments with 
agricultural plants and insect pests suggest 
important roles for T,, in influencing plant 
and insect development (4 ,  5). However, 
there has been little research on the conse- 
quences o f  elevated TMIN for natural ecosys- 
tems (6 ,  7 ) .  I f  elevated T M I N  leads to longer 
growing seasons, net primary production 
and carbon sequestration may increase as a 
consequence (8 ) .  However, the opposite 
may occur i f  elevated T,,, leads to in- 
creased plant and microbial nocturnal 
respiration rates without a compensatory 
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increase in  photosynthesis. Additionally, 
elevated T,,, could shift competitive in- 
teractions among C,  (cool-season) and C ,  
(warm-season) plants. 

It is important to identify features o f  eco- 
systems that are sensitive to changes in T M I N .  
T o  date, most modeling efforts and experi- 
mental manipulations investigating ecosys- 
tem responses to climate change have as- 
sumed that future warming will occur primar- 
ily during the day or uniformly over the 
diurnal cycle. This assumption clearly is 
not valid on a global level nor at most 
regional scales (2) .  Furthermore, there is no 
a priori reason to assume that ecosystems 
will respond similarly to changes in  T,,, 
and T,,,. T o  investigate potential ecolog- 
ical consequences o f  elevated T M I N ,  we  
examined a 23-year data set for correlations 
between temperature [ T M I N ,  T,,,, and 
mean annual temperature (T,,,) (T,,, = 

(T,,, + TM,,)/2)] and both the abundance 
and aboveground net primary productivity 
(ANPP) o f  several key plant species and 
functional groups found at the Central 
Plains Experimental Range ( 9 )  in north- 
eastern Colorado. 

W e  identified seasonal and annual trends 
in T,, and T,,, to determine whether 
asymmetric diurnal temperature increases 
held true for this site (10). The densities o f  
most species were determined by counting all 
individuals within permanently marked quad- 
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rats (11). Harvests at time o f  peak standing 
crop were used as estimates o f  ANPP (12, 
13). Plants in the shortgrass steppe are 
commonly water-limited, and variation in 
precipitation could obscure plant responses to 
gradually changing temperatures (9, 14). 
Therefore, we included annual and seasonal 
precipitation totals, in addition to annual and 
seasonal minimum and maximum tempera- 
tures, as variables for stepwise regression 
model selection (15). W e  constructed linear 
models to evaluate significant correlations 
between these variables and ANPP or plant 
species density (16) .  

Mean annual temperatures (T,,,) have 
increased by  an average o f  0.12"C year-' at 
this site since 1964 (P = 0.0001, R2 = 0.52). 
During this period, T,,, increased 0.085"C 
year-' (Fig. l A ) ,  whereas T,,, increased 
0.15"C year-' (Fig. 1B). W e  limited fhrther 
analyses o f  temperature to the period begin- 
ning in 1970, when standardized monitoring 
o f  vegetation density was initiated. Since 
1970, T,,, has risen over 1.3"C, largely due 
to a significant increase in T M I N  o f  0.12"C 
year-' (P = 0.003; R2 = 0.44). However, 
there was no significant trend for T,,, (P = 

0.49). Averages o f  seasonal minimum tem- 
peratures since 1970 also exhibited signifi- 
cant warming, with similar trends in winter 
(0.17"C year-', P = 0.0013, R2 = 0.40), 
spring (0.16"C year-', P = 0.0007, R2 = 
0.43), and summer T M I N  (0.12"C year-', P = 

0.004, R2 = 0.33). No significant trends were 
detected in fall T M I N  ( P  = 0.64, R2 = 0.01). 
Annual precipitation (Fig. 1C) varied from 
230 to 480 m m  and has also exhibited a 
significant linear increase since 1970 (6  m m  
year-', P = 0.007, R2 = 0.30). However, 
there were no significant correlations be- 
tween annual or seasonal T M I N  and annual or 
seasonal precipitation ( P  > 0.1). 

Since 1983 (12), ANPP o f  Bouteloua gra- 
cilis, the dominant C, grass o f  the shortgrass 
steppe, declined over time (-12.2 g m-2 year1; 
P = 0.002; R2 = 0.78), and was negatively 
correlated with average spring TMIN (Fig. 2A). 
ANF'P o f  the most abundant C, forb, Sphaer- 
alcea coccinea, was negatively correlated with 
winter TMIN (Fig. 2B). In contrast, ANPP o f  
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both the C, sedge Carex eleocharis (Fig. 2C) 
and of all C, forbs combined (Fig. 2D) was 
positively correlated with fall and summer 
T,,,, respectively. Plant density was also cor- 
related with T,,,. Exotic forb density was pos- 
itively correlated with spring T,,, (Fig. 2E), 
whereas the density of the C, grass Sitanion 
hystrix was positively correlated with winter 
T,,, (Fig. 2F). 

The relationships between T,, and veg- 
etation revealed by these analyses highlight 
potential effects of climate change on natural 
ecosystems. This shortgrass steppe site has 
experienced increases in T,,, over the past 
few decades that are similar to trends found 
by othercat larger spatial and temporal scales 
(2). For each 1°C increase in average spring 
T,,, ANPP of the dominant grass decreased 
by nearly one-third (Fig. 2A). Because this 
one species (B. gracilis) represents an aver- 
age of 66% of total ANPP and nearly 90% of 
the total basal cover (9) ,  this result has seri- 
ous implications for both the structure and 
function of the shortgrass steppe, if its pro- 
ductivity is causally related to T,,,. Boutel- 
oua gracilis is a drought- and grazing-toler- 
ant species that makes up as much as 40% of 
the diet of cattle on the shortgrass steppe (1 7). 
A major reduction in this species could have 

1964 1972 1980 1988 

Year 

Fig. 1. Summary of c l imate data fo r  t h e  
Central Plains Experimental Range site. ( A )  
Average annual T,,,. The  heavy l ine is t h e  
signif icant linear t rend in  TMAx [TMAx = -1 50 
+ 0.085 (year) ;  P = 0.001; R = 0.361. (B) 
Average annual T,,,. The  heavy l ine is t h e  
signif icant linear t rend in T,,, [T,,, = -299 
+ 0.15 (year); P = 3.3 X lo-'; R = 0.681. 
( C )  To ta l  annual precipitat ion. The horizontal 
dashed l ine identi f ies t h e  average annual pre- 
c ip i ta t ion (323 m m )  a t  th is  s i te  since 1939. 

substantial consequences for livestock pro- forbs (Fig. 2E) and between fall T,, and C. 
duction if it were not replaced by other pal- eleocharis (Fig. 2C) is consistent with this 
atable species. Also of concern is the increase hypothesis. 
in exotic forb density, because invasive exo- Some of the corselations could be the 
tic plants are already recognized as a threat to result of effects of elevated T,,, on biotic 
the structure and hnction of numerous natu- interactions. Some plants may be increasing 
ral ecosystems (18); increasing T,, may (Fig. 2, C through F) in response to the 
exacerbate this threat. decrease in B, rrvacilis ANPP and the conse- 

Elevated T,,, may have direct, but coun- 
terbalancing, effects on ANPP and the abun- 
dance of plants through mechanisms such as 
increased rates of carbon assimilation due to 
warmer mornings, accelerated carbon loss 
through increased rates of respiration due to 
warmer nights, and differential effects on C,- 
versus C4-photosynthesizing plants. Positive 
corselations between T,,, and both forb 
ANPP and exotic plant densities (Fig. 2, D 
and E) support the hypothesis that increased 
production will be observed in some plants, 
and the negative correlation between T,,, 
and B. gracilis ANPP (Fig. 2A) is consistent 
with the increased respiration hypothesis. In 

" 
quent increase in availability of space, nutri- 
ents, or water, rather than because of any 
direct effects of elevated T,,, on these 
plants. Alternatively, if increased T,,, ben- 
efits the growth of C, plants (Fig. 2, C 
through F), this could subsequently result in 
negative effects on the C4 B, gracilis (Fig. 
2A). Such a scenario might occur if cool- 
season plants were able to reduce available 
soil moisture before the period of rapid 
growth of warm-season plants. Intertrophic 
interactions might also be affected. If in- 
creased developmental and consumption 
rates by insects in response to elevated T,,, 
(4) are common, increased herbivory could 

addition to direct effects on rates of plant alter plant responses to climate change. 
physiological processes, increases in T,,, Without a clear causal link, there is no 
could affect plant growth indirectly through compelling evidence to eliminate factors oth- 
changes in the length of growing seasons er than increased T,,, as causes of observed 
through increased duration of the frost-free changes in ANPP and plant densities. Unfor- 
period or changes in the availability of soil tunately, most experiments and models de- 
water. An increase in season duration would signed to investigate climate change effects 
be expected to primarily benefit cool-season have focused on manipulating T,, or have 
plants that are growing most rapidly, and assumed equal contributions by T,, and 
preemptively consuming resources, early and T,,, toward achieving an increase in T,,,. 
late in the growing season. The positive cor- The outcomes of such experiments may not 
relation between spring T,,, and exotic C, realistically predict the future structure and 
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lations w i t h  seasonal av- 
erage T,,,. ( A )  Bouteloua 
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[ANPP = 288 - 33.1 (T,,,! 
P = 0.039; R2 = 0.481. (B) 
Sphaeralcea coccinea and 
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- 0.77 (T,,,); P = 0.038; R2 
= 0.481. (C) Carex eleocharis 
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+ 2.44 (T, ); P = 0.019; R2 
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dynamics of ecosystems if climate change 
continues to be manifested primarily as in- 
creases in T,,,. There is a need for experi- 
ments that define the relationship between 
T,,, plant abundance, and ANPP and that 
identify mechanisms behind the relationship. 
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