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Plant Paralog to  Viral 
Movement Protein That 

Potentiates Transport of mRNA 
into the Phloem 

Beatriz Xoconostle-Cazares,* Yu Xiang,* Roberto Ruiz-Medrano,* 
Hong-Li Wang, Jan Monzer, Byung-Chun Yoo, K. C. McFarland, 

Vincent R. Franceschi, William J. Lucas? 

CmPP16 from Cucurbita maxima was cloned and the protein was shown to 
possess properties similar to those of viral movement proteins. CmPPl6 mes- 
senger RNA (mRNA) is present in phloem tissue, whereas protein appears 
confined to sieve elements (SE). Microinjection and grafting studies revealed 
that CmPP16 moves from cell to  cell, mediates the transport of sense and 
antisense RNA, and moves together with its mRNA into the SE of scion tissue. 
CmPP16 possesses the characteristics that are likely required to mediate RNA 
delivery into the long-distance translocation stream. Thus, RNA may move 
within the phloem as a component of a plant information superhighway. 

Phloem represents an advanced long-distance (2) .  T o  this end,  S E  are connected to CC 
transport system that delivers nutrients and through specialized, branched plasmodesma- 
hormones to plant tissues and organs. Mature ta (3 )  that mediate delivery o f  proteins into 
S E  are enucleate ( I )  and thus must  rely o n  the long-distance translocation stream (4, 5) .  
their associated companion cells (CC) for T11e observation that specific m R X A  mol -  
maintenance o f  their physiological functions ecules, such as sucrose transporter 1 (SCTTI) 
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RNA, are present within CC-SE plasmodes- 
mata and in parietal locations in functional 
SE (6) suggests that RNA can similarly traf- 
fic through CC-SE plasmodesmata. These 
findings are consistent with experiments that 
probe the mechanism by which plant viruses 
establish a systemic infection. Genetic, mo- 
lecular, and cellular approaches have estab- 
lished that plant viruses express movement 
proteins (MP) having the capacity to interact 
with plasmodesmata to mediate cell-to-cell 
transport of MP and viral nucleic acid-MP 
complexes (7-9). Thus, plant viruses likely 
have evolved the capacity to exploit the en- 
dogenous pathways utilized by the plant to 
traffic macromolecules from their sites of 
synthesis into surrounding cells (I). 

Delivery of RNA to distant tissues and 
developing organs may reflect a mechanism 
used by plants to regulate translational events 
(11). Operation of this endogenous RNA 
translocation system could involve phloem- 
specific proteins whose functions would par- 
allel those of plant viral MPs. To identify 
such proteins within the phloem sap (Fig. 
lA), we used polyclonal antibodies raised 
against the 35-kD MP of red clover necrotic 
mosaic virus (RCNMV) (12) in irnrnunoblot 
analyses (Fig. 1B). Here we report on the 
isolation and characterization of the 16-kD 
Cucurbita maxima (pumpkin) phloem protein 
(CmPP16) that displays functional similarity, 
and a limited degree of sequence identity, to 
the MP of RCNMV. 

CmPP16 was purified, its NH,-terminus 
was sequenced, and reverse traiscriptase- 
polymerase chain reaction (RT-PCR) was 
used to amplify a CmPP16 probe (13). We 
identified two cDNA clones from a pumpkin 
stem cDNA library constructed from stem 
mRNA (14) that encode proteins with pre- 
dicted masses of 16.5 and 15.6 kD. These 
cDNA clones shared 82% identity at the ami- 
no acid level and were designated CmPPl6-I 
and CmPP16-2, respectively. We synthesized 
a fragment of CmPP 16 by PCR and identified 
four introns within the CmPP16-1 genomic 
clone (Fig. 2A). This result established that 
these are endogenous plant genes, not derived 
from viral RNA, which would lack introns (and 
could have been present in the phloem of in- 

Escherichia coli and used to generate poly- CmPP16-1, endogenous CmPP16, and the RC- 
clonal antiserum. Irnmunoblot analysis with NMV MP (Fig. 1C). A BLAST search identi- 
this R-CmPP16-1 antiserum recognized R- fied homologues in rice and maize (Fig. 2B); 

Fig. 1. lmmunodetection of pumpkin phloem proteins. Phloem proteins were extracted (4). resolved by 
SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and either stained with Coomassie blue 
(A) or immunoblotted (74, 24) to  identify proteins that cross-react with antiserum t o  RCNMV 
M P  (B) or polyclonal antibodies to  R-CmPP16-1 (C). Samples tested include recombinant 
RCNMV MP, recombinant CmPP16-1, and phloem sap proteins (4). Because R-CmPP16-1 
contains a histidine tag and a peptide linker, it is about 2 kD larger than the endogenous proteins, which 
differ in mass by 1 kD, in agreement with the deduced size of the CmPP16-1 and CmPP16-2 proteins 
(Fig. 2). We did not detect a reaction with either antiserum directed against a total protein preparation 
extracted from E. coli or with preimmune serum. Total phloem protein. 50 ) ~ g  per Lane; recombinant 
proteins (RCNMV MP and R-CmPP16-1). 5 ) ~ g  per lane. 

fected plants). Hybridization of 32P-labeled CrrFPlGl lra ~ H ~ ; M K  KMONG$G : G G ~ N ~  r';1 I.o 

CmPP16-1 RNA to a genomic Southern blot CWPISZ 118 H K ana *w 
Os-lEFi211a h - -  H 1"s K ~ O D H ~ E Q ~ G ? ; " A ~ S  F P O  1% 

identified two genes (15). Recombinant His,- ~s-=IERI 121 I ' -  H T s < Q D H  E Q  G n S F P Q  159 
&-1 I07 b _ L ' - E . . CmPP 16- 1 (R-CmPP 16- 1) was produced in 117 

~ w - I  la , I L - i d - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ ~  U S  s w s  in 
RCYt.4V-tIPlas h "H . 

B. Xoconostle-Cbzares, Y. Xiang, R. Ruiz-Medrano, H.- 
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Fig. 2. Gene structure and comparison of CmPP16 and related proteins. (A) Schematic representation 
of CmPP76-7 gene displaying its five exons. (6) The CmPP16-1 (CenBank accession number AF079170) 
and CmPP76-2 (CenBank accession number AF079171) genes encode proteins of 16.5 and 15.6 kD, 
respectively (23). Homologous proteins were identified in rice (0s-FIERC2, accession no. U95136; 
0s-FIERGI, accession no. U95135; 0s-1, accession no. 024373) and maize (Zm-1, accession no. 
U64437); the regions of greatest identity were present toward the NH,-terminus. A PKC-like C, 
Ca2++/phospholipid-binding domain (76) is indicated by open rectangles. A comparison of blocks (25) of 
these proteins with RCNMV M P  identified four domains having a high antigenic index (DNAstar, 
Madison, Wisconsin). Black boxes indicate identity, and shaded boxes indicate conservative changes. 
MegAlign software was used to align sequences (25). 
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incomplete sequences for two additional genes 
were also present in the Arabidopsis expressed 
sequence tag database. 

Immunocytochemical experiments estab- 
lished that CmPP16 protein is confined to the 
SE periphery within the vascular tissue (Fig. 
3, C and D; schematic transverse section of 
pumpkin stem), which suggests that it may be 
associated with the plasma membrane. Con- 
sistent with this observation, we found that 
CmPP16 contains a C, domain (Fig. 2B) 
present in the Ca2+-binding protein kinase C 
(F'KC) family (16). Northern blot (Fig. 3B) and 
immunocytochemical localization analyses 
demonstrated that CmPPl6 mRNA and protein 
are present in the SE of leaves, stems, roots, and 
flowers. Finally, both high-resolution in situ 
hybridization and in situ RT-PCR (1 7) methods 
demonstrated that the CmPP16 mRNA is pre- 
dominantly located within CC, and to a lesser 
extent in SE, of the functional phloem of petiole 
and stem tissues (Fig. 3, E to H). 

Sequence comparison of CmPP16 and 
RCNMV MP showed four motifs that display 
similarity (Fig. 2B) and likely account for the 
amount of immunological cross-reactivity de- 
tected between these proteins. Gel mobility- 
shift assays were next performed to test the 
capacity of these proteins to interact with 
RNA. R-CmPP16-1 was able to bind both 
sense and antisense CmPP16-1 RNA as well 

as RCNMV RNA2 (Fig. 4A). An equivalent NMV MP (8), R-CmPP16-1 bound RNA but 
capacity for RNA binding was displayed by failed to interact with both single-stranded 
the RCNMV MP (Fig. 4B). Similar to RC- and double-stranded DNA (Fig. 4, D and E, 

Table 1. R-CmPP16-1 interacts with mesophyll plasmodesmata to mediate its own cell-to-cell 
transport and potentiate the trafficking of sense and antisense RNA. Lucifer yellow CH and 11-kD 
FITC-dextran were from Molecular Probes. TOTO. TOTO-1 iodide; TRITC, tetramethylrhodamine-5- 
(and 6)-isothiocyanate. 

Injected material 

Microinjection 

Total Movement* 
( 4  [n (%)I 

Lucifer yellow CH 
FITC-dextran (1 1 kD) 
R-CmPP16-1 + 1 1-kD FITC-dextran 
Endogenous CmPP16 + 11 -kD FITC-dextran 
TRITC-R-CmPP16-1 
TRITC-R-CmPP16-1 + sense CmPP16-1 RNA-CF 
TRITC-R-CmPP16-1 + antisense CmPP16-1 RNA-CF 
TRITC-R-CmPP16-1 + RCNMV sense RNA 2-CF 
CmPP16-1 ss-DNA-TOT0 
TRITC-R-CmPP16-1 + CmPP16-1 ss-DNA-TOT0 
TRITC-RCNMV MP 
TRITC-RCNMV MP + CmPP16-1 sense RNA-CF 
CmPP16-1 sense RNA-CF 
CmPP16-1 antisense RNA-CF 
RCNMV sense RNA 2-CF 
SUTl sense RNA-CFt 
SUTl RNA-CF + TRITC-R-CmPP16-1 

*Number of injections and percent of total injections in which the probe moved into surrounding mesophyll cells. In coinjeaion 
experiments, the distribution patterns of TRITC-labeled protein and CF-labeled RNA were coincident, as deduced frm simultaneous 
multiple-channel fluorescence analysis performed with a CLSM [see supplernentaly materi  (Fig 3) at wwwxiencemago9/feature/ 
daW982968.shlI. tSUT1 from potato (6) was CF labeled as described in (18). 

Fig. 3. Localization of CmPP16 mRNA and protein in C. maxima vascular 
tissue. (A) Schematic transverse section of a pumpkin stem. Vascular bundles 
are composed of internal and external phloem (IP and EP, respectively), 
cambium (CA), and xylem (X) [see supplementary material (Fig. 2) at www. 
sciencemag.org/feature/data/982968.shl]. Such bundles are distributed in a 
ring around the outer region of the stem (or petiole). (8) Northern blot 
analyses establish that the CmPP76 RNA is located in a variety of plant 
tissues. Total RNA (10 p, ) from the indicated tissue was electrophoresed, 
blotted (74, probed with $'P-labeled CmPP16 open reading frame at 6591. 
and washed with 0.1 X SSC (0.015 M NaCl and 0.0015 M sodium citrate). (C) 
Cellular arrangement within the IP illustrating functional (arrowheads) and 
immature (asterisks) SE derived from the CA. Semithin section stained with 
toluidine blue. (D) Confocal Laser scanning microscope (CLSM) image of a 
pumpkin semiserial section [see (C)] labeled with antiserum to R-CmPP16-1 
reveals the presence of CmPP16 within the phloem (26). CmPP16 signal 
(green fluorescence) is present at the periphery of mature and immature SE. 
Tissue structure was observed (red fluorescence) with Safranin 0 used as a 
histochemical stain. Controls with preimmune sera yielded images devoid of 
fluorescent signal. (E to H) CLSM images of transverse pumpkin petiole 
sections processed for in situ RT-PCR (77). To identify cellular structure, we 
collected images (E and C) before removal of unincorporated CF-labeled 
deoxyuridine triphosphate. Asterisks identify immature SE. CmPP76 mRNA is 
detected (green fluorescent signal) within immature CC-SE complexes and, 
predominantly, in mature CC (F); note low but detectable amount of green 
fluorescent signal in SE. White asterisks in (E) and (F) facilitate identification 
of the same cell in the two images. In control experiments, tissues were 
treated in the same manner except that primers were omitted (H). Red 
fluorescence in (F) and (H) represents autofluorescence. Scale ban, 50 pm; bar 
in (D) is common to (C) and bar in (F) is common to (E), (C), and (H). 
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respectively). Bovine serum albumin was 
used as a control, showing no interaction with 
DNA (Fig. 4C). To examine the functions of 
these two proteins, we carried out a series of 
microinjection experiments (18). As found 
for the RCNMV MP (8), R-CmPP16-1 has 
the capacity to interact with plasmodesmata 
to induce an increase in size-exclusion limit, 
potentiate its own cell-to-cell transport, and 
mediate the trafficking of RNA (Table 1). 

Consistent with our gel mobility-shift as- 
says, R-CmPP 16- I mediated the cell-to-cell 
transport of both sense and antisense RNA of 
two different sequences but was unable to 
effect the movement of single- or double- 
stranded DNA. No cell-to-cell movement 
was detected when chromatide fluorescein 
(CF)-labeled RNA or DNA-TOT0 (Molecu- 
lar Probes) alone was introduced into a target 
mesophyll cell (Table 1). These results sup- 
port the hypothesis that R-CmPP16-1 medi- 
ates the cell-to-cell transport of RNA through 

mesophyll plasmodesmata (19). 
Grafting experiments between pumpkin 

and cucumber plants provided another test of 
the capacity of endogenous CmPP16 to move 
from the CC into the SE through plasmodes- 
mata. Phloem sap was collected from the 
cucumber scion of 10-day-old grafted plants 
(5), and proteins were electrophoresed, blot- 
ted, and immunodetected with antiserum to 
R-CmPP 16- 1. Endogenous CrnPP16 was pres- 
ent in the phloem sap of both pumpkin and the 
cucumber scion (Fig. 5A). Hence, the hetero- 
graft, immunolocalization, and microinjection 
experiments establish that CmPP16 protein has 
the capacity to move from the CC into the 
phloem long-distance translocation stream. Ali- 
quots of these same phloem saps were used to 
extract RNA, which was then amplified by 
RT-PCR, which revealed the presence of 
CmPP16-1 mRNA in both pumpkin (control) 
and the cucumber scion but not in homografted 
cucumber (Fig. 5B). These results are consis- 

Fig. 4. R-CmPP16-1 binds vari- CmPP16 CmPP16 RCNMV CmPP16 
ous RNA molecules. Electromo- sense anti-sense RNA 2 ss DNA 
bility-shift assays were per- > -A  A D - - - - - - ,  
formed by mixing R-CmPP16-1 A 
(A) or RCNMV MP (B) with 50 ng 
of the appropriate 32P-labeled 
RNA in binding buffer (8). These 
mixtures were incubated for 1 
hour at 4"C, resolved in 1% (wl 
v) agarose gels, and then pro- 

-a 
1PP16 

cessed for autoradiography. (C) - _  DNA 
Control RNA binding assays were 
performed with bovine serum al- E d  

bumin. The 32P-labeled RNA 
probe was synthesized in vitro 
(MAXlscript kit, Ambion, Austin, w 

Texas). A similar series of elec- - 
tromobility-shift assays was per- 
formed wkh single-st-randed'(ss) 
(D) and double-stranded (ds) (E) DNA. DNA was electrophoresed as in (A) and visualized by 
ethidium bromide staining. The amounts of protein used in each experiment were as follows: 0.0, 
0.1, 0.2, 0.4, and 0.8 pg. Both R-CmPP16-1 and RCNMV MP interact with RNA in a manner 
consistent with cooperative binding. However, R-CmPP16-1 did not interact with DNA. Both 
R-CrnPP16-1 and RCNMV MP formed complexes with sense and antisense RNA, and similar 
threshold amounts of protein were required for RNA retardation. In contrast, bovine serum albumin 
failed to retard the RNA probes. 

Fig. 5. Endogenous CmPP16 and its RNA move in the 
phloem from pumpkin stock into a heterografted scion. 

p* 

Phloem sap was collected from pumpkin, cucumber, and A CdD* &&@- =*G*;~* 9J 
cucumber scion heterografted onto pumpkin stock (5). (A) kD 
Proteins were resolved in a 4 to 20% SDS-PAGE 
gradient and then immunodetected with antiserum to 17 - 
R-CmPP16-1. CmPP16-1 and CmPP16-2 are present in 16 - - 
phloem sap collected from pumpkin (control) and the 15  - 
heterografted cucumber scions, indicating that the two 
forms of CmPP16 move within the phloem long-dis- B 
tance translocation stream, albeit with seemingly dif- 
ferent efficiencies. Two putative CmPP16 homologues 
are present in the phloem sap collected from cucumber 

, - 
but are absent or present at much reduced amounts in 
the sap of heterografted cucumber scions. Absence of 
the cucumber homologues from the scion phloem sap 
may reflect a block on their entry into the SE by the 

from cucumber. CmPP76 RNA was analyzed by RT-PCR (77). 

kb F=-a 
pumpkin proteins. Total phloem protein loaded was 50 pg per Lane. (B) CmPP76 RNA is present in 
phloem sap collected from pumpkin and heterografted cucumber scion but absent from sap obtained 

tent with our in situ RT-PCR, gel mobility-shift, 
and microinjection assays and provide support 
for the hypothesis that CmPP16 protein plays a 
role in mRNA delivery into the phloem trans- 
location stream. 

Our results add to the emerging picture of 
non-cell-autonomous regulation of gene ex- 
pression in plants (20). The discovery that 
sequence-specific cosuppression can operate 
through an imposed graft union (21) likely 
reflects the involvement of RNA transport 
through the phloem (11). The ability of 
R-CmPP16-1 to mediate cell-to-cell transport 
of both sense and antisense transcripts of 
various sequences provides a possible molec- 
ular basis to explain how plants can translo- 
cate RNA present within the functional sieve 
tube system (1 7). 

Insight into the possible involvement of 
supracellular control over developmental pro- 
cesses in animal systems has come from stud- 
ies in which double-stranded RNA was mi- 
croiniected into Caenorhabditis elegans (22). 
It will be intriguing to learn theextent to 
which the macromolecular trafficking sys- 
tems used by plants and animals share com- 
mon features. 
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