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sity of apoptotic cells identified by TUNEL Both 
staining procedures produced the same pattern of 
degeneration in the brains of vehicle-treated rats and 
the same pattern of increased degeneration in the 
brains of (+)MK801 -treated rats. To visualize degen­
erating cells by DeOlmos cupric silver staining, we 
perfused the brains with fixative containing parafor­
maldehyde (4%) in phosphate buffer, and serial 
transverse sections (70 jxm thick) were cut by vi-
bratome from the entire forebrain and stained with 
silver nitrate and cupric nitrate. Degenerating cells 
incorporate silver and appear dark against a light 
background. 

8. Neuronal degeneration was quantified in 16 brain 
regions (Table 1) using the optical disector and frac-
tionator method as described [L L Cruz-Orive and 
E. R. Weibel, Am. J. Physiol. 258, L148 (1990)]. A 
counting frame (0.05 mm by 0.05 mm, dissector 
height 0.07 mm), and a high-aperture objective were 
used for .visualizing and counting neurons. Unbiased 
sampling of each brain region was performed by 
randomly selecting 8 to 10 viewing fields over which 
the counting frame was positioned for counting at 
different focal levels by the optical dissector method. 
The numerical density of normal neurons in any given 
region was determined by counting neuronal profiles 
in 70-jxm-thick sections stained with a Nissl stain 
(methylene blue, azure II). The numerical density of 
degenerating neurons in any given region was deter­
mined by counting argyrophilic profiles in 70-fxm-
thick sections stained by the DeOlmos silver method 
(7). Counting was performed in a blinded manner. 
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in PBS-Triton X-100 for 1 hour at room temperature. 
Microscopic fields were photographed with a Kodak 
digital camera under fluorescence illumination to 
detect localization of the BODIPY fluorescence probe 
and under ordinary illumination to detect the TUNEL 
diaminobenzidine reaction product. The two images 
from a given field were then superimposed with 
PhotoShop software to determine whether the GFAP 
and TUNEL labels were colocalized in the same cells. 
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GABAB receptors play a critical role in the 
fine-tuning of central nervous system synap­
tic transmission (7) and are attractive targets 
for the treatment of epilepsy, anxiety, depres­
sion, cognitive deficits, and nociceptive dis­
orders (2). Their effects are brought about by 
multiple signaling cascades involving adeny-
lyl cyclase, inwardly rectifying potassium 
channels (GIRKs), and voltage-dependent 
Ca2+ channels (7). Recently, the cDNA for a 
seven-transmembrane domain (7TM) protein, 
termed GABAB receptor 1 (GBR1), which 
exists in two NH2-terminal splice forms (A 
and B) and has high affinity for GABAB 
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receptor antagonists, was identified. GBR1 
can account for some, but not all, of the 
functional properties of native GABAB re­
ceptors (3). 

We used the yeast two-hybrid system 
(Y2H) (4) to look for intracellular proteins 
that mediate signaling events downstream of 
GBR1 activation. The COOH-terminal intra­
cellular region of GBR1 (amino acids 857 to 
960 in GBR1A) (3) was used as a bait (5) to 
screen a rat brain cDNA library (6). Our 
search through 2 X 106 recombinant clones 
yielded five positive clones, all of which 
encoded overlapping fragments of the 
COOH-terminus of a previously unidentified 
protein. Full-length cloning (7) of the identi­
fied cDNA revealed an open reading frame 
for a protein of 940 amino acids with an 
NH2-terminal 40-residue signal sequence and 
seven internal hydrophobic segments charac­
teristic for 7TM proteins (Fig. 1A) (8). A 
public database search for related sequences 
(8) revealed GBR1B with the best score (36% 
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amino acid sequence identity across 804 arni- 
no acids). On the basis of this similarity, we 
termed the protein GBR2. 

We mapped the domains mediating the 
interaction between GBRl and GBR2. As 
identified by a series of deletion constructs 
and subsequent analysis in the Y2H system 
(4, 5), the interaction was mediated by two 
short domains centrally located in the intra- 
cellular COOH-termini of GBRl and GBR2 
(Fig. 1B). These domains span 35 amino 
acids in GBRl and 32 amino acids in GBR2 
and are predicted to be a-helical (8). Interac- 
tion was found between GBRl and GBR2 but 
not between GBRl molecules or between 
GBR2 molecules (9), suggesting a require- 
ment for a heteromeric assembly of the two 
7TM proteins. 

Fig. 1. Sequence com- 
parison and interaction 
analysis of CBR pro- 
teins. (A) Amino acid se- 
quence (27) alignment 
of CBRlA, CBRlB, and 
GBR2. The overall se- 
quence similarities are 
25.5% between CBRlA 
and CBR2, and 29.9% 
between CBRlB and 

A 
tew 
GBRlB 
GBR2 

GBm 
GBRlB 
GBR2 

Glutathione S-transferase (GST) pull- 
down assays from HEK293 cell extracts (10) 
confirmed the interaction between the 
COOH-termini of GBRl and GBR2. Only 
the GST fusion proteins containing the 
GBR1-COOH-terminus or the GBRl hetero- 
merization domain (see GBRlA7 in Fig. lB), 
but not GST alone, were able to bind to the 
GBR2-COOH-terminus. No dimerization be- 
tween GBR1-COOH-termini was detected 
(Fig. 1C). Thus, the COOH-termini of GBRl 
and GBR2 can interact in both yeast cell 
nuclei and the cytoplasm of mammalian cells. 

The GBR2 mRNA was expressed only in 
the brain (Fig. 2A) (II), as has been de- 
scribed for GBRl (3). To assess if GBRl and 
GBR2 have the potential to interact in the 
brain, we compared the expression patterns 
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of the mRNAs for the two proteins. As re- 
vealed by in situ hybridization (12) in serial 
rat brain sections. GBRl and GBR2 are wide- 
ly expressed and show considerable overlap 
(for example, in the cerebellum, cortex, and 
medial habenula, Fig. 2, B to E). Thus, GBRl 
and GBR2 have the potential to interact in 
many neuronal populations. Indeed, the pat- 
tern as well as the strength of expression of 
the mRNAs is largely consistent with the 
distribution and density of GABA, receptor 
binding sites in the brain (13). Despite the 
large overlap in the expression of GBRl and 
GBR2, we found spatial and temporal differ- 
ences. GBRl mRNA expression was more 
widespread than that of GBR2 (for example, 
in the striatum, olfactory bulb, and lateral 
habenula, Fig. 2, B, D, and E) and had an 
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earlier onset (Fig. 2F). Thus, GABA, recep- pression of GBR2 may contribute to a matu- 
tor isoforms lacking GBR2 may be present in ration of GABA, receptors. 
the brain, and the delayed developmental ex- In keeping with the properties of native 

.# 

. . 
Str 

transcripts are moder- 
ately expressed in the cerebral cortex (B) and certain anterioventral thalamic nuclei (9) and are 
undetectable in white matter (9). Expression of CBRl is enriched in comparison to GBR2 in the striatum 
(B), the olfactory bulb (B), the septa1 nuclei (B), the lateral habenula (D), the CA2-CAI hippocampal 
subfields [(B and E); arrowheads in (E) indicate the approximate boundary between CA3 and CAZ 
subfields], and in the neuroepithelial cells of the ventricular zone (indicated by asterisks) of embryonic 
(day 17) brain (F). On the day of birth, CBRl and GBR2 are coexpressed in the hippocampus and the 
thalamic nuclei and diffusely expressed in the cortex, but only GBRl is detected in the developing 
cerebellum (9). Sense probes yielded no signal (9). Abbreviations: Br-brain, Bs-brainstem, Cb-cerebellum, 
Ctx-cortex, Fb-forebrain, C-cerebellar granule cell layer, He-heart, Hi-hippocampus, In-intestine, Li-liver, 
Lu-lung, M-molecular layer, Mh-medial habenula, Ki-kidney, Lh-lateral habenula, Olf-olfactory bulb, 
Pu-cerebellar purkinje cells, Se-septal nuclei, Str-striatum, Te-testis, and Th-thalamus. 

Fig. 3. Coupling of 
A g,zo GBRl and CBR2 ex- 

pressed in HEK293 
cells to  effector sys- 
terns. Forskolin (2 
p ~ )  treatment for 40 - 40 1 4 0  

20-min stimulated 
intracellular CAMP con- 
centrations by about a 
factor of 10 (normal- 
ized to loo%, filled 
bars). Treatment of 
~arallel sam~les with 

Control 

-500 

(R)-baclofen 1500 pM, 
unfilled bars) or CABA 

--- I 
(1 mM) (9) attenuated forskolin-stimulated CAMP production in cells transfected with GBR2 alone (8) 
(P = 0.001) or with CBRl and CBR2 (C) (P = 0.019), but not in GBRl-transfected cells (A) or in 
untransfected cells (9). Pretreatment of transfected cells with pertussis toxin (10 nglml) for 10 hours 
abolished the CBR2-mediated decrease in forskolin-stimulated CAMP production (114 + 22%; P = 
0.001) (9). Data are presented as mean + SEM from at least three experiments performed in 
quadruplicates and were analyzed by analysis of covariance with post hoc Dunnett's t e a  (R)-baclofen 
(50 p,M) or GABA (100 p.M) (9) did not increase barium (Ba2*, 1 mM)-sensitive CIRK currents (224 + 
46 PA, n = 23, measured at -140 mV) when either (D) GBRl (a factor of 1.01 + 0.01 over control, 
n = 4) or (E) CBR2 (a factor of 0.95 + 0.05 over control, n = 3) was coexpressed with GIRK1 and ClRK2 
in HEK293 cells. Thus, the current traces ovehpped in the absence (control) and presence of 
(R)-baclofen. (F) Upon coexpression of CBRl and CBR2, (R)-baclofen (50 p,M) or CABA (100 p.M) (9) 
reversibly increased CIRK currents by a factor of 2.2 + 0.3 (n = 13) or 3.3 + 0.8 (n = 4) over control 
values, respectively. Pretreatment of transfected cells with pertussis toxin (500 nglml) for 24 hours 
abolished the effect of CBRl and GBR2 activation on CIRK currents (n = 3) (9). Current traces represent 
average currents of five voltage ramps (- 150 to +5 mV over 300 ms). 

GABA, receptors (14), activation of heterolo- 
gously expressed GBR2 elicited a decrease in 
forskolin-stimulated adenosine 3',5'-mono- 
phosphate (CAMP) production (Fig. 3B) (15). 
This decrease, in our hands, was significant in 
contrast to the effect of GBRl activation on 
forskolin-stimulated CAMP production (Fig. 
3A). Coexpression of both proteins decreased 
forskolin-stimulated CAMP production to the 
same extent as GBR2 alone (Fig. 3C). The 
GBR2-mediated decrease in CAMP production 
was sensitive to pertussis toxin, suggesting the 
involvement of the GJG, class of heterotrimer- 
ic GTP-binding proteins (G proteins). Thus, 
heteromeric assembly of GBRl and GBR2 
does not seem to be required for inhibition of 
adenylyl cyclase. 

A crucial physiological effect mediated by 
native GABA, receptors is the activation of 
outward potassium currents through GIRKs 
(16). Reconstitution of GBRl or of GBR2 with 
GIRKl and GIRK2 in HEK293 cells failed to 
mediate GIRK activation (Fig. 3, D and E) (1 7). 
When coexpressed, GBRl and GBR2 mediated 
a robust increase in potassium conductance 
through GIRK activation (Fig. 3F) in a pertussis 
toxksensitive manner. Thus, the physical in- 
teraction between GBRl and GBR2 appears to 
be essential for the coupling of GABA, recep- 
tors to GIRKs. Given the importance of GIRK 
activation in the generation of late inhibitory 
postsynaptic potentials at inhibitory synapses 
(16), the interaction between GBRl and GBR2 
is likely to play a pivotal role in modulation of 
neurotransmission. 

Thus, we have identified a COOH-termi- 
nal interaction between two GABA, receptor 
proteins. The resultant heteromeric assembly 
adds an element of complexity to G protein- 
mediated signaling mechanisms. Monomers 
of GBRl, of GBR2, and of putative addition- 
al members of this receptor family and het- 
eromers thereof may provide a molecular ba- 
sis for the different pharmacological and 
functional subtypes of GABA, receptors (I, 
18), thereby opening therapeutic avenues. 
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Rule Learning by 
Seven-Month-Old Infants 

C. F. Marcus," S. Vijayan, S. Bandi Rao, P. M. Vishton 

A fundamental task of language acquisition is to extract abstract algebraic rules. 
Three experiments show that 7-month-old infants attend longer to sentences 
with unfamiliar structures than to  sentences with familiar structures. The 
design of the artificial language task used in these experiments ensured that this 
discrimination could not be performed by counting, by a system that is sensitive 
only to  transitional probabilities, or by a popular class of simple neural network 
models. Instead, these results suggest that infants can represent, extract, and 
generalize abstract algebraic rules. 

What learning mechanisms are ai~ailable to 
infants on the cusp of language learning? One 
learning mechanism that young infants can 
exploit is statistical in nature. For example, 
Saffran et al. (1)  found that the looking be- 
haviors of 8-month-old infants indicated a 
sensitivity to statistical information inherent 
in sequences of speech sounds produced in an 
artificial language-for example, transitional 
probabilities, which are estimates of how 
likely one item is to follow another. In the 
corpus of sentences "The boy loves apples. 
The boy loves oranges." the transitional prob- 
ability between the words "the" and "boy" is 
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1.0 but the transitional probability between 
the words "loves" and "apples" is 112 = 0.5. 

It has been suggested that mechanisms 
that track statistical information, or connec- 
tionist models that rely on similar sorts of 
information [for example, the simple recur- 
rent network (SRN) (2)] ,  may suffice for 
language learning (3). The alternative possi- 
bility considered here is that children might 
possess at least two learning mechanisms, 
one for learning statistical information and 
another for learning "algebraic" rules (4)- 
open-ended abstract relationships for which 
we can substitute arbitrary items. For in- 
stance? we can substitute any value of x into 
the equation y = x + 2. Similarly, if we know 
that in English a sentence can be formed by 
concatenating any plural noun phrase with 
any verb phrase with plural agreement, then 
as soon as we discover that "the three blick- 
ets" is a well-formed plural noun phrase and 
that "reminded Sam of Tibetan art" is a well- 
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