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where an and a5 are proport~onal to electronic 
(kinet~c) energles in the noi~nal and SC states. 
In our experin~ents, ps and [q, - : I T s ]  are 
obtained independently (28). Therefore. the 
inequality p, > [I\ -?is] (Fig. 3) indicates 
that kinetic energy change associated with the 
SC transition may account for the discrepan- 
cy in spectral nre~ght. 

The change of the electron~c kinetic enerw 
at T < Tc suggested by our data should be 
connasted with the beha\ior of conventional 
supeiconductors ahere this effect 1s negl~gibly 
small. Moreover, in inetallic superconductors 
p, - [I\ - ?is] ought to be negative. consistent 
with the experimental data for lead films (29). 
At least hvo models proposed for high-Tc su- 
percoilductors (17, 18) predicted the coirect 
sign of the effect but expected it to be dominant 
in the response of the CuO, planes. The inter- 
layer tunneling (ILT) theosy (5, 8, 9) predicted 
the pi > [hi, - : I T 5 ]  inequality found in the 
c-axis transport. but the absolute value of pS in 
T12201 is smaller (7, 20) than is expected with- 
in the ILT model (5, 8). Because change in the 
interlayer lcinetic energy has been detected in 
several classes of high-T, superconductors, we 
believe that this unusual effect will be insku- 
inental in nairowing the field of plausible the- 
oretical models of high-Tc supercond~~ctivity. 
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Imaging Electron Wave 
Functions of Quantized Energy 

Levels in Carbon Nanotubes 
Liesbeth C. Venema, Jeroen W. G. Wildoer, Jorg W. Janssen, 

Sander J. Tans, Hinne 1. J. Temminck Tuinstra, 
Leo P. Kouwenhoven, Cees Dekker* 

Carbon nanotubes provide a unique system for studying one-dimensional quan- 
tization phenomena. Scanning tunneling microscopy was used to observe the 
electronic wave functions that correspond to  quantized energy levels in short 
metallic carbon nanotubes. Discrete electron waves were apparent from pe- 
riodic oscillations in the differential conductance as a function of the position 
along the tube axis, with a period that differed from that of the atomic lattice. 
Wave functions could be observed for several electron states at adjacent 
discrete energies. The measured wavelengths are in good agreement with the 
calculated Fermi wavelength for armchair nanotubes. 

Carbon nanotubes are molecular wires that directions and can oilly propagate in the di- 
exhibit fascinating electronic properties (I). rection of the h ~ b e  axis. Nanoh~bes are there- 
Electrons in these cylindrical fullerenes are fore interesting systems for studying the 
confined in the radial and circumferential quantum behavior of electrons in one dirnen- 
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sion (ID). Limiting the length of a carbon 
nanotube leads to a "partiole-in-a-box" quan- 
tization of the energy levels. Such discrete 
energy levels have been observed in transport 
experiments on individual nanotubes and 
ropes (2, 3). The electron wave functions 
corresponding to these discrete states can in 
principle be imaged by scanning tunneling 
microscopy (STM). The well-known STM 
work on quantum corrals demonstrated that 
wave patterns could be directly imaged in the 
local density of states of a 2D metal surface 
(4). Here, we applied this technique to map 
out the wave functions of single molecular 
orbitals in short metallic carbon nanotubes. 
Electronic wave functions were apparent 
from periodic oscillations in the low-bias dif- 
ferential conductance along the tube axis. 

Previous STM spectroscopy studies were 
done at a large (-2 eV) energy scale to 
investigate the band structure of nanotubes 
(5, 6) .  These experiments confirmed the pre- 
diction (7) that carbon nanotubes can be 
semiconducting or metallic, depending on the 
tube diameter and the chiral angle between 
the tube axis and hexagon rows in the atomic 
lattice. Here, our focus is on the low-energy 
(-0.1 eV) features of short metallic nano- 
tubes that exhibit quantum size effects. Sin- 
gle-wall nanotubes with a diameter of -1.4 
nm were deposited on Au(ll1) substrates (5, 
8). On most tubes, we were able to obtain 
STM images with atomic resolution (5), 
which allowed us to determine the chiral 

shortened nanotube show a step-like behavior 
(Fig. 2A), which we ascribe to quantum size 
effects. Steps in I-V correspond to quantized 
energy levels entering the bias window when 
the voltage is increased. Current steps at a 
voltage V thus correspond to discrete electron 
states at energy E = EF + aeV, where E, is 
the Fermi energy, e is the electron charge, 
and a 1 (12). The experimentally observed 
width of the current plateaus between the 
steps ranges from 0.05 to 0.09 V. The plateau 
width is determined by the total energy re- 
quired to add an electron to the tube. This 
addition energy consists of a combination of 
finite-size level splitting and the Coulomb 
charging energy that is due to the small ca- 
pacitance of the tube. A simple estimate for 
the energy level splitting for a tube of length 
L = 30 nm is given by AE = hvF/2L = 0.06 
eV, where vF = 8.1 X lo5 m/s is the Fermi 
velocity and h is Planck's constant. The ca- 
pacitance C of a nanotube lying on a metallic 
substrate can be approximated by the formula 
for a metallic wire parallel to a conducting 
plane, C = 27~&&/ln{[d + (d2 - R2)L'2]lR} 
(13), where E, = 8.85 X 10-l2 Flm, d is the 
distance from the wire axis to the plane, and 
R = 0.65 nm is the wire radius. Estimating 
d ;-. 0.9 nm gives C ;- 2.0 aF, which yields a 
charging energy Ec = e2/C = 0.08 eV. Both 
numbers are in the same range as the ob- 
served plateau width. Because the charging 

angle and diameter of the tubes (9). The A 
nanotube in Fig. 1B is identified as an arm- 
chair tube by the good fit between the ob- ~ 
served hexagon structure and the overlay of 
the graphene lattice. Armchair tubes have a 
nonchiral structure because the hexagon rows 
are parallel to the tube axis. This type of tube 10 nm 

has metallic properties (7). Current-voltage 
(I-V) characteristics measured up to kO.5 V 
on the armchair tube in Fig. 1B indeed dem- 
onstrate the simple linear behavior expected 
for a metallic tube. Such I- V measurements 
are done by keeping the STM tip stationary 
above the nanotube, switching off the feed- 
back, and recording the current as a function 
of the voltage applied to the sample. In all our 
experiments, the STM was operated at 4.2 K 
(10). 

The armchair tube in Fig. 1B was short- 
ened to a length of -30 nrn by locally cutting 
the tube; this was done by applying a voltage 
pulse of + 5  V to the STM tip at a position 30 
nm from the end of the tube (11). STM 
spectroscopy was then carried out near the 
middle of the short tube. I-V curves for the 

Department of Applied Physics and DIMES, Delft Uni- 
versity of Technology, Lorentzweg 1, 2628 CJ Delft, 
Netherlands. 

*To whom correspondence should be addressed. E- 
mail: dekker@qt.tn.tudelft.nl 

Fig. 1. STM topographic images of individual 
single-wall carbon nanotubes. (A) Example of a 
nanotube shortened by applying a voltage 
pulse to the STM tip above the tube (77). (B) 
Atomically resolved image of an armchair 
nanotube. The arrow denotes the direction of 
the tube axis. This nanotube can be identified 
as armchair-type because the hexagon rows 
run parallel to the direction of the tube axis 
(see overlay of the graphene lattice). The tube 
diameter is 1.3 nm. This image was taken be- 
fore the tube was shortened to 30 nm. Feed- 
back parameters are V = 0.1 V, I = 20 PA. 
Images were taken in constant-current mode. 

energy and level splitting are of about equal 
magnitude, an irregular step spacing in the 
I-V curve is expected (14). Here, the relevant 
point is that each step corresponds to a dis- 
crete energy level entering the bias window. 

The central result of our experiments is 
that the tunneling conductance measured for 
such discrete states is found to oscillate along 
the length direction of the nanotube with a 
period different from the atomic lattice con- 
stant. I-V spectroscopy curves were obtained 
at different locations on top of the nanotube 
along a line parallel to the tube axis in con- 
stant-current mode. At every point, spaced 23 
pm apart, the feedback was switched off to 
take an I-V curve, starting at the bias voltage 
used for feedback in the constant-current 
mode. Figure 2A shows several I-V curves 
obtained in this way at different positions. 
The current displays a clear variation be- 
tween maximum (dashed curves) and mini- 
mum values (solid curves) for negative bias 
voltage. Peaks in the differential conductance 
dIldV (Fig. 2B) appear at the voltage posi- 
tions of current steps in the I-V curves. The 

Position x along the tube axis (nm) 

Fig. 2. STM spectroscopy measurements on a 
30-nm-long armchair tube. (A) I-V characteris- 
tics of the tube shown in Fig. 16, taken at 
positions about 0.18 nm apart [data points 1 to 
4 in (C)] on a straight line along the tube axis. 
Current steps correspond to discrete energy 
states entering the bias window. Dashed 
curves, maximum values; solid curves, mini- 
mum values. (B) Differential conductance dl/dV 
versus V, as calculated from the I-V curves. 
Peaks appear at the voltage positions.of current 
steps in the I-V curves. (C) Differential conduc- 
tance dlldV as a function of position along the 
tube. Data were taken at a bias voltage of 
-0.08 V. Data points 1 to 4 indicate the posi- 
tions at which the four I-V curves plotted in (A) 
and dlldV curves in (B) were obtained. 
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height of the dIldV peaks varies periodically 
with position x along the tube axis (Fig. 2C). 
The period of these oscillations in the differ- 
ential conductance is -0.4 nm, which clearly 
differs from the lattice constant of 0.25 nm. 
The periodic variation of dIldV versus x can 
be attributed to the electronic wave functions 
in the nanotube, as discussed below. 

The wave functions of several adjacent 
energy levels can be displayed simultaneous- 
ly by plotting the differential conductance 
dIldV as a function of the voltage and the 
position x along the tube (Fig. 3A). Wave 
patterns can be observed for four different 
energy levels appearing at bias voltages of 
0.11, 0.04, 0.00, and -0.05 V (15). At each 
level, a horizontal row of about seven maxi- 
ma is resolved in dIldV as a function of 
position x along the tube (see Fig. 3B for the 
1D spatial profile of the wave functions be- 
longing to these states). The experimental 
quantity dIldV is a measure of the squared 
amplitude of the quantized electron wave 
function I q(E,x) 1 (16). The curves in Fig. 
3B are fitted with a function of the form 
dI1dV = A sin2(2.rrx/X + +) + B, which 
represents a simple trial function for 

Fig. 3. Spectroscopy A 
and topography Line 
scans along the nano- 
tube, showing electron 
wave functions of dis- 

e' 
Crete electron states as 
well as the atomic lat- 

conductance dlldV (in 
tice. (A) Differential 

I q(E,x) 1 2. The separation of -0.4 nm be- 
tween peaks in dI1dV corresponds to half the 
wavelength A because dI1dV measures the 
square of the wave function. The wave- 
lengths obtained from the fitting procedure 
vary from 0.66 to 0.76 nrn (Fig. 3B). Other 
measurements on the same tube reproduced 
values for A in the range of 0.65 to 0.8 nm. 
From repeated spectroscopy measurements 
(such as Fig. 3A) on the same tube, we 
estimate the error in the wavelength to be 
-0.02 nrn. 

Note that the dI/dV maxima in Fig. 3A 
occur at different positions x for the different 
horizontal rows. This excludes many experi- 
mental artifacts (such as, for example, oscil- 
lations in the STM) and provides compelling 
evidence for the interpretation in terms of 
standing electron waves. Typically, only a 
small number of discrete levels (about four) 
were observed around zero bias. At larger 
bias voltages beyond the images shown here, 
peaks in dIldV could no longer be discerned 
clearly. At these voltages, the broadening of 
energy states apparently exceeds their sepa- 
ration. Similar electron waves with a wave- 
length of -0.7 nm were also observed in a 

color scale) against the 
bias voltage (y axis) 
and the position on a 
straight line along the 
tube (x axis). This plot 
results from about 100 
I-V curves taken at po- 
sitions -23 pm apart 
along the tube axis. 
Electron wave func- 
tions of four different 
energy levels are ob- 
served as periodic vari- 
ations in dlldV along 
the tube at voltages of 
0.11, 0.04, 0.00, and 
-0.05 V. A horizontal 
row of about seven dl1 
d V maxima is observed 

number of other shortened metallic nano- 
tubes. On shortened semiconducting nano- 
tubes, the level splitting could not be re- 
solved, and attempts to measure electron 
waves were unsuccessful. A small energy 
level splitting is indeed expected for semi- 
conducting tubes, because here the Fermi 
energy is located at the top of a band (7). 

Figure 3C shows the topographic height 
profile from the constant-current measurement 
at +0.3 V, which clearly has a different peri- 
odicity from that observed in dIldV (Fig. 3B). 
The period of 0.25 nrn is in agreement with the 
atomic lattice constant a, = 0.246 nm for an 
armchair nanotube. Apparently we are imaging 
the atomic corrugation at high bias voltage. 
Simultaneously, I-V spectroscopy curves are 
measured at every point (Fig. 3, B and C), 
starting at the set point used for feedback (100 
pA and +0.3 V). As a result of maintaining 
feedback at this voltage, the lattice periodicity is 
largely compensated because the STM tip fol- 
lows the atomic corrugation, which makes it 
possible to resolve the quantized electron waves 
in Fig. 3, B and C (16). 

Discrete levels are probed at energies near 
the Fermi energy EF, and therefore the wave- 
length of the electron waves is close to the 
Fermi wavelength A,. Electronic band struc- 

- 
at each energy level. 
Note that the exact 50 
voltages at which the 
peaks in dlldV appear " 
in Figs. 2 and 3A are 0 a I 

different (75). (8) dlld V 
profiles at the four re- 

0.0 1 .o 2.0 

solved energy levels. Poaitron x along tho tub u k  (nm) 
- . .. . 

Fits of the f i c t i o n  dl1 
dV = A sin2(2nxlX + +) + B are plotted as dashed curves. The resulting wavelengths A are given above 
the curves on the right. Curves are vertically offset for clarity. (C) Topographic height profilezQ of the 
nanotube. STM topographic imaging and spectroscopy were performed simultaneously by scanning the 
tip along the tube and recording both the tip height (with feedback on) and I-V spectroscopy curves 
(feedback off). Feedback parameters are V = 0.3 V,  I = 100 PA. 

ture calculations (1: 7) for armchair tubes 
yield two bands near EF with a linear energy 
dispersion E(k) = EF 2 hv, (k  k,), where h 
= h / 2 ~ ,  k = 2dA is the wave vector, and k, 
= 2dAF is the Fermi wave vector. In u i  
doped nanotubes, the two bands cross at the 
Fermi energy where k = kF = 21~/3a,. This 
yields XF = 3a0 = 0.74 nm, independent of 
the length of the tube. For nanotubes on 
Au(lll), however, EF is shifted away from 
the crossing point to lower energy by 6E = 
0.3 eV. This is due to charge transfer as a 

A 0.32 run 0.43 nm 
s -10 
E -"OF 1 .o 2.0 

Pdtion x along the tub rxh (m) 

Fig. 4. Pairing of conductance peaks. (A) Spec- 
troscopy line scan where pairing of dlldV max- 
ima can be observed. Neighboring peaks are 
nonequidistant, indicating a nonsinusoidal 
wave function. The distance between next- 
nearest-neighbor peak is -0.75 nm, which 
agrees with the Fermi wavelength. (8) Sche- 
matic of a possible arrangement of lobes of the 
wave function of a single molecular orbital. In a 
line scan along the blue line, peaks in dlldV will 
be equidistant, whereas pairing will occur i f  a 
line scan is carried out along the red line. 
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result of a difference in work function with the 
underlying substrate (5). This shifts kF to kp ± 
M with §k = §E/hvF, and \ F thus becomes 
(2u)/(kF ± U) = 0.69 nm (+) or 0.79 nm (-). 
The experimentally observed wavelengths (Fig. 
3B) correspond well to the theoretical values, 
confirming the predicted band structure with 
two linear bands crossing near EF. This result 
provides quantitative evidence for our interpre­
tation of the oscillations in dlldV in terms of 
wave functions of discrete electron states. 

A short metallic nanotube resembles the 
textbook model for a particle in a ID box. For 
a discrete energy state with quantum number 
n, the corresponding wavelength \n = 2L/n. 
The observedrwavelength is much smaller 
than the tube length, in accordance with the 
fact that the number of electrons within one 
nanotube band is large (n ~ 102). The wave­
length will therefore vary only slightly (A\n 

= \Jn ~ 0.01 nm) for adjacent discrete 
energy levels in one band. 

The measurements reported here are techni­
cally challenging because they require a large 
series of reproducible I-V curves. Occasionally, 
we were able to resolve some of the spatial 
structure in the wave function at a length scale 
smaller than the Fermi wavelength (Fig. 4A). In 
this scan the peak spacing is nonequidistant, 
leading to an apparent pairing of peaks. This 
feature indicates that the wave function does 
not conform to a simple sinusoidal form. Re­
cent calculations by Rubio et al (17) indicate a 
nontrivial spatial variation of the nodes in the 
wave function of discrete electron states in the 
direction perpendicular to the tube axis (Fig. 
4B). Line profiles can show either pairing or an 
equidistant peak spacing, depending on the ex­
act position of the line scan. The observation of 
pairing confirms that the relevant period in the 
line scans is the distance between next-nearest-
neighbor peaks. 

Our experiments demonstrate that individu­
al wave functions corresponding to the quan­
tized energy levels in a short metallic nanotube 
can be resolved because of the large energy 
level splitting. The technique for recording the 
wave periodicity at different energy states pro­
vides a tool for further exploration of the dis­
persion relation in nanotubes. Future work 
should include similar experiments on nano­
tubes with various chiral angles. The method­
ology presented here also opens up the possi­
bility of obtaining full 2D spatial maps of the 
electron wave functions in carbon nanotubes. 
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species, particularly BrO. Bromine or BrO 
(or other halogens) catalytically convert two 
ozone molecules to three oxygen molecules 
without a loss of the halogen (3). Although 
the chemical cycles destroying ozone are well 
understood, the source of the reactive bro­
mine compounds remains unclear, but they 
are most likely formed by oxidation of sea 
salt halogenides (4). Bromine oxide has been 
observed by DOAS in several places in the 
Arctic (5, 6) and Antarctica (7). Satellite-
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Episodes of elevated bromine oxide (BrO) concentration are known to occur at 
high latitudes in the Arctic boundary layer and to lead to catalytic destruction 
of ozone at those latitudes; these events have not been observed at lower 
latitudes. With the use of differential optical absorption spectroscopy (DOAS), 
locally high BrO concentrations were observed at mid-latitudes at the Dead Sea, 
Israel, during spring 1997. Mixing ratios peaked daily at around 80 parts per 
trillion around noon and were correlated with low boundary-layer ozone mixing 
ratios. 
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