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Molecular Basis of T Cell 
Inactivation by CTLA-4 

Kyung-Mi Lee,* Ellen Chuang,* Matthew Griffin, Roli Khattri, 
David K. Hong, Weiguo Zhang, David Straus, Lawrence E. Samelson, 

Craig B. Thompson, Jeffrey A. Bluestonet 

CTLA-4, a negative regulator of T cell function, was found to associate with the 
T cell receptor (TCR) complex j chain in primary T cells. The association of TCRj 
with CTLA-4, reconstituted in 293 transfectants, was enhanced by p56Ick- 
induced tyrosine phosphorylation. Coexpression of the CTLA-4-associated ty-  
rosine phosphatase, SHP-2, resulted in dephosphorylation of TCRj bound to 
CTLA-4 and abolished the p561ck-inducible TCRt-CTLA-4 interaction. Thus, 
CTLA-4 inhibits TCR signal transduction by binding to TCRS and inhibiting 
tyrosine phosphorylation after T cell activation. These findings have broad 
implications for the negative regulation of T cell function and T cell tolerance. 

CTLA-4 is a T cell activation molecule es- 
sential for nonnal homeostasis of T cell re- 
activity. Engagement and cross-linking of 
CTLA-4 blocks production of interleukin-2, 
cell cycle progression, and cell differentia- 
tion, whereas in vivo blockade of CTLA-4- 
B7 interactioll enhances autoreactive and tu- 
mor-specific T cell activity (I). Although it 
has been proposed that CTLA-4 affects sig- 
nals downstream of initial T cell signaling 
events, several lines of evidence suggest that 
the negative signaling may occur at the T cell 
"activation cap" (2). Therefore, we investi- 
gated whether engagement of CTLA-4 direct- 
ly affects proximal events of TCR-induced 
signaling pathways. 

Primary T cells were activated for 2 days 
with monoclonal antibodies (mAbs) to CD3 
and CD28 for optimal CTLA-4 expression 
and then rested to maximize anti-CD3-inedi- 
ated signaling events. CTLA-4 cross-linking 
during restimulation with anti-CD3 mAbs re- 
sulted in decreased tyrosine phosphoiylation 
of multiple intracellular proteins migrating 
between 18 and 40 kD (Fig. 1). Innnunoblot 
analyses deinonstrated that the affected pro- 
teins migrating at 18 to 23 kD represented the 
TCRj  chains, whereas the protein migrat- 

ing at 36 kD was LAT (linker for activation 
of T cells) ( 3 ) ,  an adaptor molecule critical 
for TCR signaling. In addition, tyrosine 
phosphorylation of mitogen-activated pro- 
tein ltinases stimulated by the anti-CD3 
illAbs was reduced after CTLA-4 cross- 
linking (4). These data suggest that 
CTLA-4 can inhibit early TCR signaling 
events within the TCR complex. 

To define the molecular mechanism by 
which CTLA-4 affected TCR signaling 
events, we analyzed anti-CTLA-4 immuno- 
precipitates, prepared from metabolically la- 
beled and activated T cells, by two-dimen- 
sional SDS-polyacrylamide gel electrophore- 
sis (PAGE) to identify interacting proteins 
(Fig. 2A). The bands migrating at 32 kD 
(nonreduced) and16 kD (reduced) were dem- 
onstrated to be TCRj based on immunoblot 
analyses with antibodies to TCRS (Fig. 2B) 
(5 ) ,  which suggests that CTLA-4 was associ- 
ated with TCRS in these cells. The specificity 
of CTLA-4-TCRt binding was confirmed as 
the 16-kD band was absent in anti-CTLA-4 
immunoprecipitates prepared from CTLA-4- 
deficient T cells (Fig. 2C) and could be spe- 
cifically blocked by the addition of CTLA-4 
inlmunoglobulin during immunoprecipitation 
(4, 6 ) .  
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encoding a concatamer of three cytoplasmic 
tails of CTLA-4 fused to a glutathione S- 
transferase [GST-(CTLA-4),] with TCRS 
(Fig. 3B). To ensure that the interaction of 
TCRC with CTLA-4 occurred at the cell 
membrane, we examined CTLA-4-TCRS as- 
sociation in 293 cells transfected with a cell 
surface-expressed chimeric Tac-5 construct 
(extracellular and transmembrane domains of 
Tac fused to the cytoplasmic domain of 
TCRC) (7). A significant amount of Tac-5, 
migrating between 43 and 60 kD, was copre- 
cipitated with CTLA-4 in these transfectants 
(Fig. 3C). Thus, the association of CTLA-4 
with TCRS can occur at the membrane and 
does not depend on other T cell-specific 
proteins. 

Previous studies have shown that p56Ick can 

Fig. 1. Anti-CD3-induced LAT and TCRS ty- 
rosine phosphorylation is inhibited by anti- 
CTLA-4 engagement. Activated T cells (5 X lo6) 
(79) were admixed with 293 cells (2.5 X lo6) 
transiently expressing a membrane-bound sin- 
gle-chain mAb to CD3 in the presence or ab- 
sence of a membrane-bound single-chain mAb 
to CTLA-4 (20). The cells were incubated at 
37°C for the time indicated and then subjected 
to lysis in buffer (LB). lmmunoprecipitates (IPS) 
were prepared with rnAb FB2 to phosphoty- 
rosine (pTyr), rabbit antiserum to LAT (3), or 
mAb H146-968 to TCRC (27, 22). IPS separated 
on a reducing SDS-12% polyacrylamide gel 
were transferred to a polyvinylidene difluoride 
membrane (Millipore, Bedford, MA) and subse- 
quently immunoblotted (IB) with mAb 4C10 to 
pTyr (Upstate Biotechnology Inc., Lake Placid, 
NY ). Bound proteins were detected by chemi- 
luminescence (Pierce, Rockford, IL). CTLA-4 
cross-linking resulted in a consistent but in- 
complete reduction of tyrosine phosphorylated 
p23TCRC and LAT. Results are representative of 
three independent experiments. 

regulate phosphorylation of both CTLA-4 and 
TCRC (8). Therefore, we examined the effect of 
p56Ick on CTLA-4-TCRS association. Cotrans- 
fection of p56Ick resulted in increased CTLA- 
4-TCRS association, especially with the high- 
er, phosphorylated form @18) of T C Q  (Fig. 
3A). p56Ick also enhanced T C Q  binding to the 
GST-(CTLA-4), fbion protein (Fig. 3B). A 
base-defective mutant p56Ick (K273A, KA) 
was not able to enhance CTLA-4-TCQ bind- 
ing and failed to recruit p18 TCRS to CTLA-4 
(Fig. 3D). These results suggest that the ty- 
rosine b a s e  activity of p56Ick was required for 
enhanced association of CTLA-4 with TCRS. 
Two tyrosines (Y20 1 and Y2 18) located in the 
cytoplasmic domain of CTLA-4 are substrates 
for src family tyrosine kinases (8). Thus, the 
role of these tyrosines in mediating TCRS as- 

-- 
2 rnin 5 rnin 

IP: anti-pTyr IP: anti-TCRC 
IB: anti-pTyr IB: anti-pTyr 

sociation was examined in cells expressing a 
tyrosine-deficient [T901 to Phe/Ty?I8 to Phe 
(Y201FN218F)] CTLA-4 double mutant. The 
mutant CTLA-4 bound to TCRS to a similar 
extent as wild-type CTLA-4 (Fig. 3A), which 
suggests that CTLA-4 tyrosine phosphorylation 
was not required for TCQ binding. Therefore, 
the enhancement of TCR(ZTLA-4 association 
by p56lCk likely depends on tyrosine phospho- 
rylation of TCRC, although p56lCk-mediated 
phosphorylation of other unidentified mol- 
ecules may be involved. 

CTLA-4 can also bind to a tyrosine phos- 
phatase, SHP-2 (9). Thus, we explored the pos- 
sibility that CTLA-4 formed complexes with 
SHP-2 and TCRS in activated T cells, which 
accounts for the lack of pl8 TCRS in CTLA-4 
immunoprecipitates (Fig. 4A). SHP-2 copre- 
cipitated with antibodies to both TCRS and 
CTLA-4. Reciprocal immunoprecipitation of 
SHP-2 and subsequent immunoblotting with 
mAbs to TCRS or CTLA-4 as well as transfec- 
tion studies (Fig. 4B) confirmed the existence 
of a multimolecular complex of CTLA-4-SHP- 
2-TCRS. Anti-CTLA-4 immunoprecipitates 
prepared fim cells transfected with CTLA4 
and TCRS contained small but detectable 
amounts of endogenous SHP-2 present in 293 
cells that were significantly enhanced by co- 
transfecting p56Ick (Fig. 4B). Overexpression of 
SHP-2 increased the amount of SHP-2 copre- 
cipitated with CTLA-4. However, SHP-2 over- 
expression eliminated the binding of pl8 TCRC 
to CTLA-4. The failure to observe p18 TCR& 
binding to CTLA-4 in SHP-2-overexpressing 
cells was not due to alterations in protein ex- 
pression, as similar amounts of CTLA-4 (4) and 
TCRS were detected. Likewise, SHP-2 overex- 
pression did not alter the overall amounts of the 
p18 form of TCRC within the cell, as equal 
amounts of pl8 TCRS were present in SHP-2- 
transfected and control cells. Similar results 
were obtained with the cells expressing the 
Tac-t; chimera (4). 

Similar to wild-type CTLA-4, the tyrosine 
mutant CTLA-4 could interact with SHP-2 

Fig. 2. (A) CTLA-4 coprecipitation of metabolically la- 
beled proteins. Activated T cells (20 X lo6 cells) (23) to 

t 
were labeled with 35S-rnethionine and 35S-cysteine A Nonredvcln~ B Nonreducln~ 
(Amersham, Arlington Heights, IL). CTLA-4 was immuno- 

= J J  
66 46 30 kD 46 30 46 30 0 C, 

precipitated from cell lysates with rnAb UC10-4F10 to kD WSRs -4 
C V  

CTLA-4 (75). Immune complexes were subjected to two- 
dimensional SDS-PACE analysis with 10% acrylamide 
gels in both the first (nonreduced) and second (reduced) 
dimensions (5). Arrows indicate proteins coprecipitated 
with UC10-4F10. (B and C) Identification of p16 TCRS by 
immunoblotting. Activated T cells (100 X lo6 cells per 21- 5+ - 
condition) (23) were lysed and subjected to irnrnunopre- -- _ - I 14- 
cipitation with rnAb UC10-4F10 to CTLA-4 or rnAb 
H146-968 to TCRC. (B) IPS run on two-dimensional SDS- 1P:anti-CTLA4 IP: anti-CTLA4 anH-6 IP: antl-CTLA4 
polyacrylamide gel (10% nonreduced, 12% reduced) Detection: S35 IB: anti< anti-6 16: anti< 
were subjected to immunoblotting with a rabbit antiser- 
um to TCRC (Ab 387) (24). The bound proteins were visualized by chemiluminescence. Upper bands in the anti-t; IP (right) represented higher 
phosphorylated forms of TCRC and TCRq. (C) Anti-CTLA-4 IPS prepared from CTLA-4 wild-type (WT) or knockout (KO) mice were separated by 
one-dimensional reducing SDS-PACE and immunoblotted with rabbit antiserum to t; (Ab 387). Ab(L) represents antibody light chain. Independent 
experiments with similar results were performed five times. 
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Fig. 3. Analysis of CTLA-4-TCRI; association in 
293 cell transfectants. (A) Coimmunoprecipita- A CTLA-4 CTLA-4 CTLA-4 CTLA-4 B GSTqCm4) ,  65 < +o 6' 
t ion o f  CTLA-4 with TCRl;. 293 cells were tran- WT tailless CTLA4 WT mutant --- - - -- 
siently transfected with cDNA constructs encod- I c k - + - +  - +  - +  - +  I c k -  + - + - + '  
ing murine CTLA-4 WT, cytoplasmic domain- r r r  t . . + + . +  . . . . . . . .  . .  
daicient (tailless) (72) C T L - 4  or CTLA-4 ty-  - rosine double mutant (Y2OIFlY218F) (25) in the !E 21- 21- . - 18 
absence or presence of WT p56Ick and murine * * 
TCRS (25). Cells were incubated for 40 hours and a"fi< Up" 4)1 anti< 

14- 
b a t e s  were ~ r e ~ a r e d .  CTLA-4 was ~ r e c i ~ i t a t e d  14- s w  
&om an equai ahount of protein [760 ki per IP 
(left); 300 y g  per IP (right)]. IPS were analyzed by '@-= 
reducing SDS-PACE and immunoblotted with antiCST 
the antibodies listed. The expression vectors 30- e 

used were pCDNA3 (CTLA-4 and TCRS, 2.5 y g  
each) and pEF (p56Ick, 1.25 p.g). (B) GST-(CTLA- 4 b - 
4), fusion protein binds TCRS. 293 cells were anti-CTLA-4 IP GST-Pull Down 

transiently transfected with cDNA encoding 
GST-(CTLA-4), (72) in the presence or absence C Tac< + + D Ick - WT KA W K A  
of p56Ick and TCRS. CST proteins were precipi- CTLA-4 - < + + +  + + +  
tated from the lysates (200 y g  per sample) wi th CTLA-4 + + + + + +  !!2 -- 
glutathione Sepharose beads (12.5 pl, Pharma- A b [ W - + - C  >Tat< pSkkt .Ick 
cia) and analyzed by electrophoresis and immu- 46- 

noblotting with either rabbit antiserum to  TCRS 1P: anti-CTLA-4 
; 

PI 6< 1 -c 
(Ab 387), or CST mAb (Santa Cruz, Santa Cruz, IB: anti-< - - 
CA). GST and GST-(CTLA-4), proteins migrated antidTLA-4 IP whole cell lysates 
at 25 and 40 kD, respectively. (C) CTLA-4 copre- 
cipitates Tac-l; in 293 transfectants. 293 cells were transiently transfected with cDNAs for Tac-t; chimera (7) in the absence or presence of WT CTLA-4. 
CTLA-4 IPS were subjected t o  SDS-PAGE and immunoblotted wi th Ab 387. Chimeric Tac-l;, migrated as a doublet when detected with Ab 387. Ab(H) 
represents antibody heavy chain. (D) Kinase-defective Ick (KA) failed to enhance TCRS association. 293 cells were transiently transfected with cDNAs 
for WT CTLA-4, murine TCRS, and either WT or kinase-defective p56Ick (26) and analyzed as described above. 

D anti- - ant[ 

(Fig. 4B) and abolished p18 TCRS binding to 
CTLA-4. These results are in contrast to the 
reported dependence of the in vitro interac- 
tion between CTLA-4 and SHP-2 on phos- 
photyrosines and SH2 domains (9). The dif- 
ference may be due to the in vivo rather than 
in vitro analysis and suggests that there may 
be a phosphotyrosine-dependent as well as 
-independent association of CTLA-4 and 
SHP-2. As CTLA-4 does not possess SH2 

domains, it is possible that TCRS binding to 
CTLA-4 is indirect and may depend on 
SHP-2 or the phosphotyrosine-dependent 
non-SH2 domain binding in CTLA-4. 

A model can be envisioned to explain the 
process by which CTLA-4 regulates T cell 
responses. T cell activation, initiated by TCR 
ligation and CD28 costimulation, results in 
the recruitment of p56Ick to the TCR cap and 
phosphorylation of multiple substrates in- 

A Activated T cells B 293 cells 

cluding TCRS, ZAP-70, and LAT. CTLA-4, 
newly expressed (1) or preexisting in resting 
cells (lo), is exported to the cell surface and 
binds to B7 molecules present in antigen 
presenting cells (11). CTLA-4 membrane lo- 
calization may be facilitated by colocaliza- 
tion to the site of TCR engagement through 
direct interaction with TCRC and p56Ick-in- 
duced tyrosine phosphorylation of CTLA-4 
(12). The interaction of TCRS and CTLA-4 
brings the phosphatase, SHP-2, into the com- 
plex where it promotes TCRS dephosphoryl- 
ation either directly by acting on TCRC or 
indirectly by regulating p56lCk kinase activi- 

IB - ,.,̂ . --- k~ ty. In this regard, several studies have dem- 
anti-SHP-2 rn IP: antl-CttA-4 onstrated a relationship between src family 

IB: anti-SHP-2 kinase activity and SHP-2 function (13). Cur- - - 
I p 4 A ~ ( H )  21- rently, the molecular nature of TCRC- 

IP: antlCTlA4 
antiCTLA-4 . . -, p% 4 C T L A ~  14- - - - - .- IB: antl-6 CTLA-4 binding is not known. Given the fact 
I that p56lCk enhanced TCRC binding to the 

I+AWL) 21- Y201FN2 18F CTLA-4 mutant, CTLA-4- 
hole cell lysates 

anti< )( 4 PW dm TCRC interaction most likely depends on ty- 
0: anti< 

14- rosine phosphorylation of TCRS or other 

WT mutant 

Fig. 4. SHP-2 associates with CTLA-4-TCRS complexes and regulates binding of TCRI; t o  CTLA-4. 
(A) Equal numbers (100 X lo6)  of activated T cells (23) were Lysed and subjected to IP with mAbs 
t o  CTLA-4 (UC10-4F10), rabbit antiserum against SHP-2 (27), and mAb t o  TCRS (H146). IPS were 
analyzed by SDS-PACE and immunoblotted with a rabbit antiserum t o  SHP-2 (27), goat polyclonal 
antibodies t o  CTLA-4 (Q20, Santa Cruz, Santa Cruz, CA), or rabbit antiserum t o  TCRl; (Ab 387). (B) 
293 cells were transiently transfected with either WT CTLA-4 or mutated CTLA-4 (Y201FN218F) 
and TCRS in the presence or absence of p56Ick or SHP-2. CTLA-4 IPS prepared from Lysates (400 k g  
per sample) or whole cell lysates (35 kg per lane) were electrophoresed and imrnunoblotted with 
rabbit antibody t o  SHP-2 (27) or antiserum t o  TCRS (Ab 387). Results are representative of three 
separate experiments. 

molecules that might be critical for their as- 
sociation. Further studies will help to eluci- 
date the molecular basis of CTLA-4-TCRS 
binding. Finally, previous studies have shown 
that the ordered phosphorylation of TCRS 
establishes the threshold for T cell activation 
(14). The ability of CTLA-4 to bind to and 
dephosphorylate the p23 form of phosphoryl- 
ated TCRC may decrease the extent and du- 
ration of TCRC phosphorylation and thereby 
antagonize TCR signal transduction. Further 
studies are needed to elucidate the functional 
importance of CTLA-4 in tolerance and an- 
tagonist peptide activity. However, the cur- 
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rent studies provide a conceptual framework 
for developing approaches to regulate T cell 
function through CTLA-4. 
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Movement Triggered by 
Costimulation During T Cell 

Activation 
Christoph Wulfing and Mark M. Davis* 

During T cell activation, the engagement of costimulatory molecules is often 
crucial to the development of an effective immune response, but the mecha- 
nism by which this is achieved is not known. Here, it is shown that beads 
attached to the surface of a T cell translocate toward the interface shortly after 
the start of T cell activation. This movement appears to depend on myosin 
motor proteins and requires the engagement of the major costimulatory re- 
ceptor pairs, B7-CD28 and ICAM-1-LFA-1. This suggests that the engagement 
of costimulatory receptors triggers an active accumulation of molecules at the 
interface of the T cell and the antigen-presenting cell, which then increases the 
overall amplitude and duration of T cell signaling. 

The central event in T cell activation is the 
interaction of the T cell receptor (TCR) with the 
antigenic peptide presented by the major histo- 
compatibility complex (MHC) of the antigen- 
presenting cell (APC). However, because the 
number of agonist peptide-MHC complexes 
can be very low, in the range of 10 to 100 per 
APC (I), and because the TCR is continuously 
modulated from the T cell surface (2); sustained 
T cell activation is liltely to require signal am- 
plification (3, 4). An i~npoi-tant component of 
this amplification is thought to be provided by 
costimulatory inolecules on the T cell, although 
the mechanism by which they accomplish it is 
unclear (5). The most important of the costimu- 
latory receptors on T cells and their ligand on 
APCs are CD28-B7 (6) and LFA-1-ICAM-1 
(7). Many different receptor couples, including 
TCR-peptide-MHC and LFA- 1-IC&M- 1, ac- 
cumulate at the T cell-APC interface (8, 9). 
This accumulation has been assumed to be a 
passive, diffusion-limited cocapping mecha- 
nism (10). Here, vie describe an active, cy- 
toskeletal mechanism that appears to drive re- 
ceptor accumulation at the T cell-APC inter- 
face. This mechanism requires the APC to ex- 
press B7 and IC&M-1 and is independent of 
TCR signaling. We suggest that this mecha- 
nism is a central part of costimulation, as it 
would effectively amplify any TCR-mediated 
signals. 

To study whether receptor accumulation 
at the T cell-APC interface could be actively 
driven by the T cell cytoskeleton, we moni- 
tored the general movement of the cortical 
actin cytoskeleton and linked receptors (11) 
using the classical technique of attaching 
large beads to the surfaces of antigen-specific 
T cells. We coated 4.5-p,m beads with an anti- 
body to the T cell sui-face antigen ICAM-1 (12). 
Cross-lmking ICAM-1 by beads in this way is 
not expected to influence T cell function (13). 
As has been observed with fibroblasts (11, 14); 
we find that in migrating 5C.C7 transgenic T 
cells (9, 15) the beads translocate from the 
anteiior to the posteiior end of the cell (16). We 
then mixed bead-loaded 5C.C7 T cells with B 
cell lymphoma cells that express the appro- 
priate MHC molecule (I-Ek) and have been 
pulsed with the moth cytochroine c peptide 
88-103. After contact with the APC, the T 
cells rapidly become activated (9, 17) and the 
beads move from the posterior end of the T 
cell to the newly formed interface with the B 
cells (Fig. 1, movie 1) begilming 4 ? 1 iniil 
after the first rise in intracellular calcium 
(n = 13). This suggests that the T cell cortical 
actin cytoskeletoil reorients toward the T cel- 
l-APC interface sooil after the start of T cell 
activation. The ensuing cytoskeletal flow 
would allow receptors that are linked to the 
actin cytoskeleton to be transported to the 
newly formed T cell-APC interface. 

Howard Hughes Medical Inst i tute and Department o f  'Ule out ICAM-l-specific effects: we 
Microbiology and Immunology, Stanford University also attached beads to T cells in two other ways. 
School o f  Medicine, Stanford, CA 94305, USA. First. we surface-biotinvlated the 5C.C7 T cells 
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