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Proofreading and 
Aminoacylation of tRNAs 

Before Ex~ort  from the Nucleus 

the nucleus of a heterogeneous population of 
processing intermediates that were spliced 
(AIVS) but not end-matured (5' ,  3' ext.) (15). 
In contrast, injection of high, nonphysiologi- 
cal amounts of the same precursor led to 
generation of a different processing interme- 
diate (Fig. lB, lanes 2 and 3) that was fully 

I matured i t  its 5' and 3' ends but not spliced 
Elsebet Lund and James E. Dahlberg* (+IVS) (15). A comparable dose-dependent 

switch in processing pathways was observed 
After synthesis and processing in  the nucleus, mature transfer RNAs (tRNAs) when a DNA template for tRNATyr was in- 
are exported t o  the cytoplasm in  a Ranpanosine triphosphate-dependent jected (compare lanes 1 of Fig. 1, C and D); 
manner. Export o f  defective or immature tRNAs is avoided by monitoring both low to moderate amounts of tRNATyr genes 
structure and function of tRNAs in  the nucleus, and only tRNAs w i th  mature produced exclusively spliced intermediates 
5' and 3' ends are exported. A l l  tRNAs examined can be aminoacylated i n  nuclei (Fig. 1 C), whereas high amounts led to accu- 
of Xenopus oocytes, thereby providing a possible mechanism for functional mulation of the inhon-containing intermedi- 
proofreading of newly made tRNAs. Inhibition o f  aminoacylation o f  a specific ate (Fig. ID). The change in the types of 
tRNA retards its appearance in  the cytoplasm, indicating that nuclear amino- intermediates that accumulated in response to 
acylation promotes efficient export. different amounts of pre-tRNA shows that 

excess substrate saturates splicing more 
In eukaryotic cells, most RNAs are processed scripts, precursors of X. laevis tRNATyT (13) easily than it saturates end maturation. 
in the nucleus. Nuclear maturation of tRNAs containing an intron (intervening sequence, In contrast to the inhon-containing inter- 
involves base modification, processing of the IVS) and extra sequences at the 5' and 3' mediate (Fig. 1, B and D), the spliced but 
5' and 3' ends, and in some cases splicing of ends (Sf, 3' ext.) were injected into nuclei of end-immature intermediates were not export- 
tRNA precursors (pre-tRNAs), with enzymes X laevis oocytes (14).  Wild-type transcripts ed (Fig. 1, A and C), indicating that end 
such as ribonuclease P (RNase P), tRNA were rapidly matured to tRNA (Fig. lA, lanes maturation but not splicing is a prerequisite 
nucleotidyl transferase, and tRNA splicing 2 and 3), with the transient accumulation in for export. When lower, more physiological 
endonuclease and ligase (1-5). In addition, 
low amounts of factors that normally interact Fig. 1. Structural re- A WT T55C GS?C 

with tRNAs during protein synthesis in the quirements for nuclear 
1") 2 ~ ;  ~ n j  _.-C,] lnj 2 ,!I ,imc 

cytoplasm have been identified in the nucle- and 
of tRNATyr. (A) Disrup- us, including aminoacyl-tRNA synthetases tion of tertia- 

Primwry & 
transcript 

(5) and translation elongation factor EF-la interactions within 
(6) .  tRNATYr interferes with 

A complex involved in tRNA export con- both processing and ex- 5 ' ,  3' evt. 

tains tRNA, the tRNA export receptor expor- gort. Low amounts of AIVS 

tin-t, and the guanosine 5'-hiphosphate 2P-Labeled RNAs corre- 

(GTP)-bound form of Ran (RmGTP) (q, a ~E;~:F ~ ~ t ~ ~ $ ! ~ ~ ~  
GTPase required for nucleocytoplasmic hans- and G57C) precursors of IRNAT? 

port of both RNAs and proteins (8, 9), but no X. laevjs ~ R N A T Y ~  Were I z 3 4 .; c 7 R 9 1n I I I ? I I I ~ I S  

cargo-specific adapter protein. In X laevis 00- injected into nuclei of 
cytes, a single pathway appears to function for Xeno~us OocYtes (741, B C P 

> 

$' D $ 2 ,. export of all tRNAs (7, 10); in Saccharomyces and (lanes 2l 41 7* 91 
12 and 14) and 2 hours N L" c* p , 

cerevisiae there may be more than one path- (la;les 3, 5, 8, 13, 
l n j ~ & l i m e  ' s c " ~ ~ '  ' V C ' ' N C " N C '  

way, because cells lacking the homologous and 15) later the intra- ,;::st I, tRNA export receptor ( L o s l ~ )  are viable (11, cellular distributions of 
12). 

Only mature tRNAs are found in the cy- 
toplasm (1, 2), and defective tRNAs, which 
might disrupt translation, appear to be ex- 
cluded. We show here that in X laevis oo- 
cytes the absence of nonfunctional tRNAs 
from the cytoplasm can be explained by ki- 
netic differences in maturation steps and by 
monitoring of mature tRNAs for their abili- 
ties to be aminoacylated, before export from 
the nucleus. 

To determine if processing enzymes con- 
tribute to the proofreading of tRNA tran- 
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the injected primary pre- 
tRNA transcripts (lanes 1, +IVS 
6. and 11). the s~liced 
(AIVS) b;t not 'end- 
matured (5', 3' ext.) ~RNATV 

processing intermedi- 1 2 . 4  4 1 6 7  1 1 . 1 4  1 2 3 4 1 6  

ates, and the mature 
tRNA (tRNATyr), were determined by analysis of total nuclear (N) and cytoplasmic (C) RNAs. The 
small amounts of injected precursor RNAs in the cytoplasm probably resulted from inefficient 
retention (22) shortly after injection. (B) Saturation of the tRNA splicing machinery leads t o  nuclear 
accumulation and export of nonspliced, end-matured tRNATyr. High amounts of wild-type primary 
transcript were injected into oocyte nuclei, and export of unspliced (+IVS) and mature tRNATyr was 
monitored at 0.75 (lanes 2 and 5), 1.5 (lanes 3 and 6), and 4 hours (lanes 4 and 7) after injection. 
(C) Disruption of the RanCTPase system blocks export but not processing of tRNATyr. LOW amounts 
of the gene for X, laevis tRNATyr (74) were injected into control oocytes (lanes 1 and 2) or oocytes 
preinjected with RanT24N, and export and processing of the newly made tRNATyr transcripts were 
monitored 4.5 hours later. The processing intermediates are fully spliced but end-immature (78), 
as observed in (A) upon injection of low amounts of WT pre-tRNATYr. (D) Nonspliced tRNATyr is 
exported via the tRNA pathway. High amounts of the gene for X. laevis tRNATyr (14) were injected 
with [(.w-32P]CTP into nuclei of control oocytes (lanes 1 and 2) or oocytes preinjected with 
anti-nucleoporin (mAb 414, lanes 3 and 4) or wheat germ agglutinin (lanes 5 and 6), and export and 
processing of the newly made tRNATyr transcripts were analyzed 20 hours later. 
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amounts of precursor are present in oocyte 
nuclei, splicing is an early event that occurs 
before end maturation, thereby ensuring that 
processing intermediates are not normally ex- 
ported. Previous studies with very high 
amounts of tRNATy' template DNA reported 
accumulation and export of the unspliced in- 
termediate, leading to the inappropriate con- 
clusion that splicing is normally the last step 
in the processing pathway (16). 

The unspliced tRNA intermediate appears 

by injection of the dominant-negative mutant 
RanT24N or the RanGTPase-activating pro- 
tein RanGAP (9, 19) blocked export of the 
mature tRNA, as shown by others (9), it had 
no effect on splicing or end maturation of 
pre-tRNATS" (Fig. lC, compare lanes 1 and 
3) (15, 18). In yeast cells disruption of the 
RanGTPase system leads to rapid accumula- 
tion of unspliced intermediates (20), perhaps 
reflecting tighter coupling between export 
and tRNA splicing in those cells. 

to be exported by the pathway used for ma- The influence of tertiary structure on mat- 
ture tRNA, because both types of molecules uration and export of tRNATyr was assessed 
responded similarly to export inhibitors. Ex- 
port was resistant to an antibody to nucleo- 
porins [monoclonal antibody (mAb) 4141 
(1 7) (Fig. ID, lanes 3 and 4), but was com- 
peted by coinjected tRNAPhe (18) and was 
sensitive to injection of the lectin wheat germ 
agglutinin (1 7) (lanes 5 and 6). Exportin-t- 
mediated export of an unspliced intermediate 
has recently been observed by others (10). 

Although depletion of nuclear RaneGTP 

by injection of precursors having mutations 
that would disrupt conserved interactions be- 
tween loops I and 111 (the D- and T-$-C-G 
loops, respectively). The precursor with a 
T55C mutation or with either C or T at 
position 57 (normally G in tRNATyc) (13) 
was processed much more slowly than wild- 
type (Fig. lA, lanes 7, 8, 12, and 13), and the 
unprocessed mutant precursors were unsta- 
ble, providing evidence for proofreading dur- 

Fig. 2. Requirements for both 5' and 3' end maturation before tRNA export. 32P-labeled RNAs 
corresponding to  human tRNAYt with the indicated 5' and 3' terminal sequences (74) were 
injected into oocyte nuclei, and the intracellular distributions of the RNAs were analyzed at 45,100, 
and 220 min (A and B) and at 30,60, and 120 min (C and D). The tRNAyet injected in (A) and (D) 
were primary transcripts synthesized in vitro, whereas the RNAs injected in (B) and (C) were 
generated by periodate oxidation and p-elimination (74) of the RNAs used in (A) and (D), 
respectively. In all cases, the major cytoplasmic forms correspond to fully mature tRNA", and the 
small amount of this form in (C) (lanes 5 to 7) is due to  heterogeneity of the 3'  ends of the injected 
RNA (78). 

ing tRNA maturation (18, 21). Those few 
mutant tRNAs that were processed to the 
mature form were exported poorly (lanes 7 to 
10) (21). Also, the binding affinity of expor- 
tin-t in vitro is reported to be higher for 
wild-type tRNA than for end-immature or 
mutated tRNAs (7, lo), indicating a role of 
exportin-t in export cargo selection. 

The requirement in tRNA export for mat- 
uration of both 5' and 3' ends was demon- 
strated by the export behavior of several vari- 
ants of the human initiator tRNA, t R N A p  
(14). tRNAY with three extra nucleotides at 
its 5' end and the mature 3' end appeared in 
the cytoplasm only after processing of the 5' 
end (Fig. 2A). tRN&Met lacking the 3'-termi- 
nal adenosine was processed rapidly at the 5' 
end but was not exported until the 3' end had 
also been matured (Fig. 2B); likewise, when 
generation of the 3' terminal CCA by tRNA- 
nucleotidyl transferase was not possible (be- 
cause of the lack of unpaired nucleotides at 
the 3' end), the transcript remained in the 
nucleus (Fig. 2C) (22). As expected, a tran- 
script having three extra nucleotides at its 5' 
end but lacking three (CCA) at the 3' end 
(23) was processed at both ends before ex- 
port, yielding a molecule with the same 
length and mobility as the precursor (Fig. 
2D). 

The requirements for both correct folding 
and mature ends of tRNAs raised the possi- 
bility that nuclear tRNAs might be subject to 
"functional proofreading" by aminoacylation 
before export. To test for aminoacylation of 
nuclear tRNAs, potential arninoacyl-tRNA 
linkages were stabilized by isolation and 
electrophoresis of t R N A p  under acidic con- 
ditions (24); brief incubation at pH 9 (which 
causes deacylation) permitted comparison 
with markers of acylated and deacylated 
forms of cytoplasmic tRNAMa (Fig. 3A, 
lanes 4 and 5). Within 20 min of injection a 

Fig. 3. Aminoacylation of A B Nuclear RaaGAP C i - N tRNA within the nucleus. (A) s min 20 min - D 
1 

+ 
Aminoacylation of tRNA- V ' N ' Y - F '  

" 5 '  s - 
Y C  N C N C 

I z  
occurs in the nucleus. 32P- t ~ ~ ~ M ' l  

\ ~ c a c r ~ a t i a m '  - + I I - + ' 
II- v 0 C I 

labeled pre-tRNA- (Fig. 2A) c ~ L  
, , was injected into oocyte nu- ,' 

h' N C N' C '  U1,- 4, 0 clei, and the intracellular RNA - + -  distributions were monitored hacr la t ion  l-' '7' - + ' --?I 
5 and 20 min later (upper a,,.tRNA I 
panels). The state of amino- 
acylation (lower panels) was ~ R N A  
assessed by isolation and 

1 2 3 4 5  analysis of RNAs under acidic 
I 

conditions (74, 24) without 
(-) or with (+) prior deacylation. (8) Nuclear aminoacylation of 
tRNAMet occurs independently of export. Export (upper panels) and 
the extents of aminoacylation (lower panel) of tRNAMet were moni- 
tored 1.5 hours after nuclear injection into oocytes that had been 
depleted of RaneCTP (74) by prior intranuclear injection of RanCAP 
protein (+) or control oocytes (-). (C) Nuclear aminoacylation of 
tRNAyet is s ecific. Mixtures of unlabeled human tRNAyet (lane 1) or 
yeast tRNApEe (lane 2) (4 to  5 prnolloocyte) and "P-Labeled control 
RNAs were in'ected into nuclei of oocytes depleted of Ran-CTP and 4 Labeled with S-methionine (74). Five hours later, nuclear RNAs were 

isolated and analyzed under acidic conditions. (D) tRNATyr also is 
aminoacylated in  the nucleus. Newly made nuclear and cytoplasmic 
tRNATyr transcripts (Fig. ID, lanes 1 and 2) were isolated under 
acidic conditions and analyzed in both neutral (lanes 1 and 2) and 
acidic gels (lanes 3 t o  6). Aminoacylated forms of tRNATyr and 
end-mature but unspliced pre-tRNATYr (lanes 3 and 5) are indicated 
by lower and upper brackets, respectively, whereas nonacylated forms 
(lanes 4 and 6) are indicated by dots. Differences in  the extents of 
aminoacylation were confirmed by assaying for resistance t o  perio- 
date oxidation (78). 
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new form of nuclear tRNAY accumulated 
that comigrated with cytoplasmic aminoacy- 
lated t R N A p  (lane 2). Like the acylated 
cytoplasmic tRNA""f, the nuclear RNA was 
resistant to periodate oxidation unless first 
deacylated at pH 9 (18), thereby confirming 
the presence of a blocking group at the 3' 
end, presumably an amino acid. 

To test if the aminoacylated tRNAY in 
the nuclear fraction represented molecules 
that had been exported but remained associ- 
ated with the outside of the nucleus, transport 
was blocked by depletion of the nuclear pool 
of Ran GTP (compare with Fig. ID) (9, 19). 
When tRNA export was inhibited in this 
manner, essentially all of the nuclear 
tRNAY migrated as the aminoacylated form 
(Fig. 3B, lanes 1 and 2), demonstrating that it 
was aminoacylated within the nucleus. 

The specificity of nuclear aminoacylation 
was examined by injection of unlabeled 
t R N A y  or tRNAPhe into oocyte nuclei con- 
taining 35S-methionine, under conditions 
where tRNA export was blocked. Only the 
tRNA of nuclei receiving t R N A v  was la- 
beled by the 35S-methionine (Fig. 3C), and 
this label was released from the tRNAY by 
incubation under deacylation conditions (18). 
Thus, nuclear tRNAM'f was aminoacylated 
with its cognate amino acid. 

Other tRNAs also can be aminoacylated 
in the nucleus. Both the mature and the un- 
spliced forms of tRNATyr were aminoacy- 
lated in the nucleus, although aminoacylation 
was more extensive for the mature tRNA 
(Fig. 3D, lanes 3 and 4) (25); in the cyto- 
plasm, both forms were almost fully charged 
(lane 5). Injection of pxt210 DNA (26) re- 
sulted in the nuclear accumulation of X. lae- 
vis tRNAs specific for alanine, asparagine, 
leucine, lysine, methionine, tyrosine, and 
phenylalanine. By both the deacylation and 
periodate sensitivity assays, all seven nuclear 
tRNAs appeared to be aminoacylated (18). 

Thus it is very likely that all tRNAs can be 
aminoacylated with their cognate amino acids 
before export from the nucleus. 

Confmation that the mobility shift of the 
nuclear tRNAT" is due to aminoacylation was 
obtained through the use of tyrosyl sulfamoyl 
adenosine (Tyr-AMS), a strong competitive in- 
hibitor of the requisite intermediate, tyrosyl- 
AMP (Tyr-AMP) (27). Tyr-AMS blocked ami- 
noacylation of tRNATYT (both nuclear and cy- 
toplasmic) but not tRNqMet, as assayed by the 
absence or presence of mobility shifts upon 
incubation under deacylation conditions (Fig. 
4A, left panel; compare lanes 3 and 4, and lanes 
7 and 8; right panel, lanes 2 and 4). As expect- 
ed, protein synthesis was strongly inhibited in 
oocytes treated with Tyr-AMS or the asparag- 
inyl-AMP analog Asn-AMS, reflecting the ab- 
sence of specific charged tRNAs (18). 

The effect of nuclear aminoacylation on 
tRNATy export was monitored with Tyr- 
AMS. In the absence of aminoacylation, ex- 
port of tRNATyr was significantly retarded 
(Fig. 4B, top panel, compare lanes 2 to 5 with 
lanes 6 to 9), but export of tRNAy" (middle 
panel) and Ul,,  RNA (bottom panel) was 
not affected; the-control oocytes received cy- 
cloheximide, to account for nonspecific ef- 
fects due to inhibition of protein synthesis. In 
a similar series of experiments, Asn-AMS 
specifically blocked aminoacylation of nucle- 
ar and cytoplasmic Asn-tRNAAsn and inter- 
fered with the export of tRNAA"", but had no 
effect on aminoacylation and export of 
tRNAT" (18). Thus, nuclear aminoacylation 
affects the rate of export of several, and 
perhaps all, tRNAs (28). 

Although aminoacylation is important for 
tRNA export, it is not essential under the 
conditions used here, because uncharged 
tRNAs can be exported, albeit more slowly. 
Even with the lowest amounts of tRNAs in- 
jected, the concentration in the nucleus far 
exceeds that of endogenous nuclear tRNAs, 

7 
B Tyr- A M S  Control 

I +, Inj /S 21 J% timc 

Fig. 4. Effect of blockage of aminoacylation on tRNA 
export. (A) Tyr-AMS blocks both nuclear and cytoplasmic tRNAF'' 
aminoacvlation of tRNArYr. we-tRNATyr (left) or tire- 
t ~ ~ ~ r ~ ' - ( r i ~ h t )  was injected into nuclei of'oo&tes ;hat - - 
had been preinjected in the cytoplasm with Tyr-AMS (+) 
or treated with cvclohexirnide (-1 (741. and 50 and 100 

I 2 . l  4 5  6 - X U  . , . ,. 

rnin later the eGent of arninoacylation of the tRNAs in the nuclear (N) and cytoplasmic (C) 
fractions were assayed. Differences in gel mobilities of the nuclear nonacylated tRNAs may 
represent differences in modifications. (B) Tyr-AMS specifically inhibits export of tRNATYr. Oocytes 
were injected as in (A), and RNA export was monitored with time. The intracellular distributions of 
tRNATyr, tRNAyet, and U1,,- at 50 rnin (lanes 2,4,6, and 8) and 100 rnin (lanes 3, 5, 7, and 9) after 
RNA injection are shown: the injected RNAs are shown in lane 1 (Inj). 

possibly driving formation of tRNA-contain- 
ing complexes that normally might not be 
stable. Aminoacylation greatly strengthens 
the binding of tRNAs to the translation factor 
EF-la (29), and charging could serve a sim- 
ilar function in promoting the association of 
nuclear tRNAs with exportin-t (plus Ran-GTP); 
artificially high levels of nuclear tRNA would 
diminish but not abolish the importance of this 
effect. Similarly, the high amounts of intron- 
containing processing intermediates that accu- 
mulate when splicing is saturated (Fig. 1B) 
favor their inappropriate export. 

Proofreading of transcripts before export 
prevents precursors from being prematurely 
separated from nuclear processing enzymes. 
In oocyte nuclei, splicing of pre-tRNAs nor- 
mally occurs faster than end maturation (Fig. 
IA), thereby ensuring that unspliced interme- 
diates are not exported. Moreover, export of 
any end-mature but unspliced tRNA is re- 
duced because export is coupled to nuclear 
aminoacylation (Fig. 4) and unspliced tRNAs 
are inefficiently charged (Fig. 3D) (I). Such 
coupling may account for the absence of 
unspliced tRNAs from the cytoplasm in 
yeast, where splicing and end maturation can 
occur in either order (30). 

Unspliced rnRNAs are generally retained 
in the nucleus, and it is likely that other 
RNAs are also subject to proofreading before 
export, by mechanisms that are yet to be 
defined. The presence of aminoacylated 
tRNA in the nucleus supports proposals that 
some mRNAs may undergo functional mon- 
itoring before or during export from the nu- 
cleus, as a step in nonsense-mediated decay 
(31); similarly, newly made ribosomes may 
be subjected to a functional quality control 
check before export. 
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Mutations of the gene Lps selectively impede Lipopolysaccharide (LPS) signal 
transduction in C3HfHeJ and C57BLIlOScCr mice, rendering them resistant to 
endotoxin yet highly susceptible to Gram-negative infection. The codominant 
Lpsd allele of C3HlHeJ mice was shown to correspond to a missense mutation 
in the third exon of the Toll-Like receptor-4 gene (Tlr4), predicted to replace 
proline with histidine at position 712 of the polypeptide chain. C57BLIlOScCr 
mice are homozygous for a null mutation of Tlr4. Thus, the mammalian Tlr4 
protein has been adapted primarily to subserve the recognition of LPS and 
presumably transduces the LPS signal across the plasma membrane. Destructive 
mutations-of Tlr4 predispose t o  the development of Gram-negative sepsis, 
Leaving most aspects of immune function intact. 

Conservative estimates hold that in the Unit- lipopolysaccharide (endotoxin), which is pro- 
ed States alone, 20,000 people die each year duced by all Gram-negative organisms. A 
as a result of septic shock brought on by powerful activator of host mononuclear cells, 
Gram-negative infection (I). The lethal effect LPS prompts the synthesis and release of 
of a Gram-negative infection is linked, in tumor necrosis factor (TNF) and other toxic 
part, to the biological effects of bacterial cytokines that ultimately lead to shock in 
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