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Magnetic Microstructure of 
Magnetotactic Bacteria by 

Electron Holography 

holograms were obtained by applying 120 V 
to an electrostatic biprism wire in the select- 
ed-area aperture plane of the microscope, in 
order to overlap the electron wave that had 
passed through the sample with one that had 
passed only through vacuum (Fig. 2B). The 
amplitude and phase of the sample wave are 
recorded in the intensity and position of the 
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Peter R. Buseck The phase is sensitive to the in-plane com- 
ponent of the magnetic induction integrated 

Off-axis electron holography in the transmission electron microscope was used in the incident beam direction and to the 
to correlate the physical and magnetic microstructure of magnetite nanocrys- mean inner (electric) potential. Neglecting 
tals in magnetotactic bacteria. The magnetite crystals were all single magnetic dynamical diffraction effects (18), the phase 
domains, and the magnetization directions of small superparamagnetic crystals is given in one dimension by 
were constrained by magnetic interactions with larger crystals in the chains. 
Shape anisotropy was found to dominate magnetocrystalline anisotropy in E + E,  
elongated crystals. A coercive field between 300 and 450 oersted was deter- +(') = (:) (E(E + 2E,) 1 '('. ' I d z  
mined for one chain. 

Magnetic crystals below 100 nm in size occur 
in organisms in many biological phyla (I). 
For example, magnetotactic bacteria contain 
magnetosomes, which are intracellular, ferri- 
magnetic ciystals of magnetite (Fe,O,) or 
greigite (Fe,S,). The magnetosomes are usu- 
ally arranged in one or more linear chains 
within each bacterium and impart a perma- 
nent magnetic moment to the cell that results 
in its alignment and motion parallel to geo- 
magnetic field lines (2). This behavior is 

ing single-domain magnetic crystals. 
The magnetic moments of magnetosome 

chains have been measured both statistically 
for large numbers of bacteria (8) and by 
magnetic force microscopy (MFM). Howev- 
er, MFM has poor resolution when applied to 
intact bacteria, and the results are difficult to 
quantify (9). Electron holography in the 
transmission electron microscope (TEM) has 
been used to provide improved high-resolu- 
tion information about materials and to ana- 

where z is the incident beam direction, x is a 
direction in the plane of the sample, B ,  is the 
component of the magnetic induction perpen- 
dicular to both x and z,  V is the mean inner 
potential of the sample, X is the wavelength, 
and E and E, are, respectively, the kinetic and 
rest mass energies of the incident electron 
(10). In most magnetic samples, the mean 
inner potential dominates the phase and must 

thought to increase the efficiency with which lyze magnetic and electric microfields (10). be removed to quantify the magnetization. 
such bacteria find their optimal oxygen con- Here, we use off-axis electron holography in Accordingly, h ~ o  holograms were obtained 
centrations or redox potentials at sediment- the TEM (Fig. 1) to directly measure the local from each area of the sample, between which 
water interfaces or in water columns (3). The magnetic fields associated with mineral par- the magnetization of the magnetite chain was 
crystals in magnetotactic bacteria have spe- ticles in magnetotactic bacteria. reversed by using the magnetic field of the 
cific morphologies within each cell type, and We examined cultured cells of Magneto- microscope objective lens. The magnetic and 
their magnetic easy axes are usually aligned spir.illunz magnetotactic~~m strain MS-1 and mean potential contributions to the phase 
along the chain axis (4). The small sizes of the marine vibrioid strain MV-1, prepared by were then calculated by taking half the dif- 
the crystals (typically between 40 and 100 methods described in (11, 12) and deposited ference and half the sum of the phases of the 
nm) suggest that they should each contain a onto carbon-coated grids. Off-axis electron two holograms, respectively (14, 18). 
single magnetic domain (5) .  However, the 
magnetic microstructure of the magnetosome 
chain is not completely understood. This in- 
formation is csucial for understanding the 
function of biogenic magnetic crystals in 
magnetic field sensing in higher organisms 
(6). It is also of interest for the potential 
applications of single-domain magnets in 
fields such as electronics, catalysis, and mag- 
netic recording (7). Magnetotactic bacteria 
provide an ideal system for studying interact- 
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holograms of individual cells of both strains 
were recorded at 200 keV with a Philips 
CM200 field-emission-gun TEM. In addition, 
elemental maps of strain MV-1 were record- 
ed at 200 keV with a Philips EM430 TEM 
equipped with a Gatan post-column imaging 
spectrometer (1 3, 14). 

Figure 2A shows a TEM bright-field im- 
age of a single cell of IM. magnetotacticum. 
The magnetite chain is 1200 nm long and 
(excluding the smallest outlying crystals at 
the ends of the chain) contains 22 crystals 
that have an average length and separation of 
-45 and -9.5 nm, respectively. Previous 
studies have shown that the crystals in IM 
magnetotacticum are combinations of the 
{ 1 1 1 } (octahedron) and { 100) (cube) forms, 
and the [ I l l ]  magnetic easy axes of the 
crystals are primarily parallel to the chain 
axis (15). A prominent defect in the chain, in 
the form of two small ciystals, is arrowed in 
the figure. The chain is asymmetrical, and 
larger crystals are at its left end. Electron 

Figure 2C shows contours formed from 
the magnetic contribution to the holographic 
phase of the cell of 114. magnetotacticunz 
when it was examined in field-free conditions 
(that is, in its reinanent state). The density of 
the contours is proportional to the component 
of the magnetic induction in the plane of the 
sample integrated in the incident beam direc- 
tion (18). The holographic images show that 
the gradient in the field is lowest where the 
field decreases at the ends of the chain and at 
gaps between individual magnetosomes. 
Some chains show a magnetic asymmetry in 
which the magnetic contribution is stronger 
on one end of the chain. The magnetic field 
lines bend in some of the magnetite crystals 
to minimize their magnetostatic energy, 
whereas in others their direction differs 
slightly from that of the chain axis. Small 
deviations in the positions of the crystals 
from the chain axis, rather than magnetocrys- 
talline anisotropy, may have a dominant in- 
fluence on the direction of the field within 
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the crystals (see below). 
All the crystals we examined are single 

magnetic domains, which is consistent with the 
qualitative prediction of a single- to multido- 
main transition when the particle size is com- 
parable to the domain wall width of - 100 nm 
for bulk magnetite (5). The particle size at 
which this transition occurs has been uncertain 
(19). Numerical micromagnetic modeling gives 
a value of -70 nm for cubes (20), which is 
predicted to increase with axial ratio (20, 21). 
Metastable single domains may exist in the 
multidomain regime (19), particularly in the 
presence of interactions between closely spaced 
particles. Examples of such behavior may be 
provided by the large (100 to 200 nm) biogenic 
magnetite crystals reported by Farina et al. (22), 
which would lie in the two-domain regime if 
they were isolated. 

Interactions between magnetosomes likely 
account for the magnetization of the small crys- 
tals at the right end of the chain in Fig. 2C. This 
observation is somewhat surprising as the crys- 
tals are less than the 20 to 35 nm size below 
which the magnetization direction of magnetite 
is expected to be thermally unstable, that is, 
supe&aramagnetic, at room temperature (19, 
21). The alignment of the magnetization of the 
smallest crystals suggests that thermal fluctua- 
tions of the magnetization are overcome by the 
field of the larger crystals in the chain and not 
by local magnetostatic interactions between the 
small crystals themselves. The results also in- 
dicate that nonmagnetic precursors, which have 
been identified in chains of magnetosomes 
in greigite-producing magnetotactic bacteria 
(23), either do not form during magnetite syn- 
thesis in magnetotactic bacteria or have already 
transformed to a magnetic form on the sample 

6 Field emission gun 

Fig. 1. Schematic illustration of set-up used for 
generating off-axis electron holograms in the 
TEM. The sample occupies approximately half 
the field of view and is coherently illuminated 
by the field emission electron gun. The posi- 
tively charged electrostatic biprism (a thin 
gold-coated quartz fiber, <0.7 p n  in diameter) 
causes overlap of the object and (vacuum) ref- 
erence waves. The resulting holographic inter- 
ference pattern is recorded digitally. 

grid. The two small crystals that form the defect 
in the chain are magnetized and result in poorer 
confinement of the field lines but do not signif- 
icantly decrease the total magnetic dipole mo- 
ment of the cell. 

The magnetic moment of the cell can be 
determined from the equation 

Fig. 2. (A) TEM bright- 
field image of a single 
cell of Magnetospiril- 
/urn magnetotacticurn 
strain MS-I. (B) Off-ax- 
is electron hologram 
obtained in field-free 
conditions from the re- 
gion marked in (A). 
The holographic phase 
changes can be seen 
most clearly, in the 
form of bending of the 
holographic interfer- 
ence fringes as they 
pass through the crys- 
tals, by looking along 
the fringes at a shallow 
angle to the plane of 
the paper. (C) Contours 
of spacing 0.064 radi- 
ans formed from the 
magnetic contribution to 
the holographic phase. 
The contours, which 
spread out at the ends 
of the chain, have been 
overlaid onto the mean 
potential contribution 

where A+ is the local change in the magnetic 
contribution to the phase across the chain and 
I is a direction along the chain axis. A value 
of 5 x A m2 (5 x electromag- 
netic units) is obtained for the moment of the 
chain in Fig. 2. This is close to the value 
calculated by estimating the volume of mag- 
netite in the chain as 22 45-nm diameter 
spheres, using the saturation magnetization of 
bulk magnetite of 0.603 T (480 emu/cm3) and 
ignoring the weak demagnetizing field asso- 
ciated with the chain of spheres. This result 

to the phase to allow the positions of the crystals to  be correlated with the magnetic contours. It follows 
from Ea. 1 that the contours are most doselv spaced where the proiected thicknesses of the crvstals are 
geatek. The intensity of the backgrounddiffers between the &o sides of the chain &use of 
variations in the projected thickness of the cell The same double crystal defect in the chain is arrowed 
in each figure. 

Fig. 3. (A) As for Fig. 
2C but for a single cell 
of strain MV-1. The 
contours of spacing 
0.064 radians are clos- 
est together within 
the crystals, and they 
spread out both at the 
end of the chain and 
at gaps between indi- 
vidual crystals. (B) 
TEM bright-field im- 
age. (C and D) Three- 
window, background- 
subtracted elemental 
maps and correspond- 
ing line-profiles ob- 
tained at 200 kV with 
a Gatan imaging filter 
for the Fe LZn3. and 0 K 
edges, respect~vely. The 
same magnetosome is 
arrowed in each figure. The noisy badcground in the oxygen lineprofile arises from the organic material 
around the magnetosomes. 
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indicates that the remanent magnetization of 
the chain is the saturation magnetization. 

We also examined strain MV-1 (24), 
which commonly contains large gaps be- 
tween the magnetosomes (Fig. 3). The crys- 
tals in MV- 1 are combinations of the { 1 10) 
(dodecahedron) and { 1 1 1 ) (octahedron) 
forms and are elongated along [ I l l ]  (25). 
The 15 magnetite crystals in the chain have 
dimensions of -60 X -35 nm, and the chain 
length is - 1600 nm. The magnetic induction 
drops gradually at the ends of the chain and 
notably at large gaps between the crystals. 
The spacings between the crystals are large 
enough for the chain to resemble a series of 
solenoids. 

The direction of the contours in the fourth 
magnetosome from the left end of the chain, 
which is misaligned with respect to its neigh- 
bors, shows that the magnetization within 
elongated crystals is dominated by their 
shape rather than by the direction of the chain 
axis. A different behavior is observed for 
more equiaxed crystal morphologies, as 
shown in Fig. 4, A and B. In this M. magne- 
totacticurn chain, the morphology of the crys- 
tals (Fig. 4A) indicates that they are aligned 
with their [ I l l ]  magnetic easy axes along the 
chain axis, whereas the magnetization direc- 
tion within two crystals (arrowed) that are 
offset laterally from the others differs from 
both their [ I l l ]  direction and the chain axis 
(Fig. 4B). The difference between this behav- 
ior for MV-1 and M. magnetotacticurn is a 
direct result of the weak magnetocrystalline 
anisotropy of magnetite (magnetite has a rel- 
atively low value for the first anisotropy con- 
stant, K,, of 1.35 X lo4 J m-3, about 30% of 
that of Fe) and because shape anisotropy of 
the magnetite crystals plays a dominant role 
for strain MV- 1. 

The magnetic moment of the chain in Fig. 
3 was measured to be 7 X 10-l6 A m2 (7 X 
10-l3 emu). The moment per unit length is 
the same as that of the chain in M. magneto- 
tacticum shown in Fig. 2 to within experi- 
mental error despite the different crystal mor- 

Fig. 4. (A) Electron hologram of part of a 
magnetosome chain within a cell of M. mag- 
netotacticum strain MS-I .  The line in (A) is 
drawn as a visual aid to  show that the two 
crystals arrowed in (B) are offset slightly from 
the chain axis. (0) Contours of spacing 0.15 
radians formed from the magnetic contribution 
to the holographic phase overlaid onto the 
mean potential contribution to phase. 

phologies in the two cells. Holograms ob- 
tained at successive values of the applied 
magnetic field show that the coercive field of 
the MV-1 chain is between 300 and 450 Oe. 
Penninga et al. (26) measured a coercive 
field of 300 Oe for M. magnetotacticurn, 
although calculations suggest that the exact 
value for any given chain is sensitive to the 
particle size, separation, and chain length 
(8,  27), as well as to magnetocrystalline 
anisotropy. A comparison of our measured 
coercive field with the results of a chain- 
of-spheres calculation for magnetite (28) 
shows much better agreement with a sym- 
metric fanning mechanism for reversal than 
with a mechanism that involves parallel 
rotation of the moments. 

Three-window, background-subtracted el- 
emental maps (29) provide compositional in- 
formation that can be correlated with the 
physical and magnetic microstmctures. The 
magnetosomes in the chain within the cell of 
strain MV-1 are composed of iron and oxy- 
gen (Fig. 3, C and D). (The same crystal is 
arrowed in each image in Fig. 3.) The iron 
line-profile shows an apparent difference in 
iron concentration between the two sides of 
the magnetosome, which is opposite in sense 
to that in the oxygen profile. This observation 
could imply that iron is primarily transported 
through the cell wall adjacent to the magne- 
tosome vesicle and subsequently transformed 
into the magnetic mineral (for example, mag- 
netite or greigite). 

Because superparamagnetic and perma- 
nently magnetized fine-grained magnetite can 
be distinguished with this technique, it could 
be used to elucidate magnetite-based magnet- 
ic sensing mechanisms in higher organisms 
(30, 31). It could also be used to study inter- 
particle interaction effects in high-density re- 
cording media and other supramolecular as- 
semblies of ultrafine magnetic particles. 
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