with 10% heat-inactivated fetal calf serum (Sigma)
and 5% penicillin/streptomycin (Gibco-BRL), were
plated overnight on acid-washed glass cover slips (13
mm in diameter) in four-well plates at a density of
105 cells per milliliter in each well. Cells were serum-
starved immediately before microinjection. Biotin
dextran (2.5 mg/ml) (Molecular Probes, Eugene, OR)
was injected alone or with eukaryotic expression
vectors (0.1 mg/ml) encoding Myc-tagged GTPase
constructs into the nucleus of at least 50 cells over a
period of 10 min. Cells were returned to the incuba-
tor for 3 hours for optimal expression. RBCs were
opsonized, and phagocytic assay and immunofluores-
cence were performed as described (73). The two
modifications that we introduced were (i) the preac-
tivation of J774 cells for 15 min at 37°C with phorbol
12-myristate 13-acetate (150 ng/ml) in serum-free
medium before the phagocytic challenge with CR3
targets and (ii) the visualization of microinjected cells
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after staining with cascade blue—conjugated avidin
(Molecular Probes). To block nonspecific binding of
antibodies to the Fc receptor, we performed incuba-
tions with antibodies in the presence of excess hu-
man or murine IgGs. All injected (cascade blue posi-
tive) J774.A1 control cetls or all Myc-expressing mac-
rophages were assessed (that is, =50 cells per con-
dition). Microinjection did not affect viability or
morphology nor did it interfere with the cell’s ability
to bind targets. The percentage of phagocytosis-
competent cells was similar in uninjected cells and
cells that were injected with biotin dextran,

17. K. Nagata, M. Driessens, N. Lamarche, ). Gorski, A.
Hall, /. Biol. Chem. 273, 15453 (1998).

18. D. Cox et al., /. Exp. Med. 186, 1487 (1997).
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Control of Cyclin Ubiquitination
by CDK-Regulated Binding of
Hct1 to the Anaphase
Promoting Complex

Wolfgang Zachariae,* Michael Schwab,* Kim Nasmyth,
Wolfgang Seufert?

Proteolysis of mitotic cyclins depends on a muiltisubunit ubiquitin—protein
ligase, the anaphase promoting complex (APC). Proteolysis commences during
anaphase, persisting throughout G, until it is terminated by cyclin-dependent
kinases (CDKs) as cells enter S phase. Proteolysis of mitotic cyclins in yeast was
shown to require association of the APC with the substrate-specific activator
Hct1 (also called Cdh1). Phosphorylation of Hct1 by CDKs blocked the Hct1-APC
interaction. The mutual inhibition between APC and CDKs explains how cells
suppress mitotic CDK activity during G, and then establish a period with
elevated kinase activity from S phase until anaphase.

Entry into anaphase and exit from mitosis are
promoted by APC-dependent proteolysis of
regulatory proteins (/). Sister chromatid sepa-
ration requires Pds1 degradation shortly before
anaphase onset, whereas Cdk|1 inactivation dur-
ing late anaphase involves proteolysis of mitot-
ic cyclins such as CIb2. How activity of the
APC toward different substrates is regulated
during the cell cycle is unclear. The APC itself
might be regulated, because the cyclin ubiquiti-
nafion activity associated with purified APC
fluctuates during the cell cycle (2, 3). APC-
dependent proteolysis requires two related pro-
teins containing Trp-Asp repeats which func-
tion as substrate-specific activators. Cdc20 pro-
motes degradation of “‘early” substrates such as
Pds1 and Hctl promotes degradation of “late”
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substrates such as Clb2 (4-6). In yeast, there is
an inverse correlation between Cdkl activity
and degradation of mitotic cyclins (7). Ectopic
inhibition of Cdkl induces precocious cyclin
degradation, suggesting a role for Cdkl in the
inhibition of cyclin proteolysis from S phase
until anaphase (8). However, the relevant Cdk1
substrate has not been identified.

To test whether Hetl is needed for cyclin
ubiquitination, we incubated extracts from G-
arrested wild-type and hct/ mutant cells with
CIb2 and CIb3 (9). Wild-type extracts support-
ed destruction box-dependent cyclin ubiquiti-
nation, whereas hct/ mutant extracts were as
defective in this reaction as extracts from a
cdcl6-123 mutant that contains a defective
APC subunit (Fig. 1). Thus, Hetl was required
for APC-mediated cyclin ubiquitination.

To test whether Hctl associated with the
APC, we constructed CDCI6-HA3 strains
containing Hctl variants with Myc epitopes
at the NH,-terminus (Myc9-Hctl) or the
COOH-terminus (Hctl-Myc9) (10). HCTI-
myc9 strains were defective in the degrada-
tion of Clb2 and CIb3, whereas Myc9-Hctl
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was fully functional. Cdc16-HA3 coprecipi-
tated with Myc9-Hctl but not with Hctl-
Myc9 in extracts prepared from cycling or
G,-arrested cells (Fig. 2A) (/I). Another
APC subunit, Cdc23-HA3, also coprecipi-
tated with Myc9-Hctl but not with Hctl-
Myc9 (12). The correlation between Hctl
function and coprecipitation with APC sub-
units suggests that cyclin ubiquitination de-
pends on an Hctl-APC interaction.

Myc9-Hctl was not associated with Cdc16-
HA3 in extracts from cells arrested in S phase
by hydroxyurea or in M phase by nocodazole
(Fig. 2A). Cdc20, in contrast, was associated
with APC subunits in both extracts (Fig. 2B).
To test whether the Hct1-APC interaction was
regulated during an unperturbed cell cycle, we
measured the association between Myc18-Hctl
and Cdc16-HA3 in cells synchronized by cen-
trifugal elutriation (Fig. 2C) (/3). Hctl was
associated with Cdc16 during G, but not during
the S, G,, and M phases (/4). Dissociation of
Hctl from the APC correlated with appearance
of the S phase promoting CIb5-Cdk1 activity.
Thus, the Hct1-APC interaction was cell cycle~
regulated.

The Hctl-APC interaction occurred only

Cib2 Clb2ADB Cib3 Cyclin
ES gg i8
; © y © y @
433 233 d83 Extract
TEFRB TS IR BN
220~ o & -
‘ Ubi-cyclin
97— -
86—
< Free cyclin

Fig. 1. Requirement of Hct1 for ubiquitination
of mitotic cyclins. Strains (MATa Apep4 Abar1)
were arrested in G, with a factor at 25°C and
shifted to 37°C for 30 min. Protein extracts
were incubated with adenosine 5'-triphosphate
(ATP) and HA3-tagged cyclins (9). Clb2ADB
lacks the destruction box. Cyclin-ubiquitin con-
jugates were detected by immunoblotting with
an antibody to the HA epitope. Molecular sizes
in kilodaltons are indicated on the left. Ahct?
mutants are partially resistant to « factor. To
?llow complete arrest in G, CLB2 was deleted
4).
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in cells lacking Cdk1 activity. To test wheth-
er Cdkl might block the Hctl-APC interac-
tion, we inactivated all Cdk1 kinases in no-
codazole-arrested Myc9-HCT! CDC23-HA3
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cells by overproduction of the B-type cyclin-
Cdk1 (Clb-Cdk1) inhibitor Sicl. We added o
factor pheromone to inhibit G, cyclin-Cdkl
(Cln-Cdk1). Cdk! inactivation induced asso-

ciation of Myc9-Hctl with Cdc23-HA3 and

degradation of mitotic cyclins (Fig. 2D).
Either the APC or Hctl might be regu-

lated by Cdkl activity. No differences
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Fig. 2. Binding of Hct1 and Cdc20 to the APC during the cell cycle.
Whole-cell extracts (WCE) and proteins immunoprecipitated with an
antibody to Myc (a-Myc IP) were analyzed by immunoblotting. (A)
Hct1-APC association at different cell cycle stages. Strains contained
wild-type proteins (=) or Cdc16-HA3 (+) and Hct1 carrying a NH,-
terminal (N) or a COOH-terminal (C) Myc9 tag. Cells were grown at
25°C (cyc) and arrested with o factor, hydroxyurea (hu), or nocoda-
zole (noc). (B) Cdc20-APC association in cells containing high Cdk1
activity. Strains containing wild-type genes (~) or CDC16-HA3 (+)
and Myc18-CDC20 (+) were grown at 30°C (cyc) and arrested with
hydroxyurea (hu) or nocodazole (noc). (€) Hct1-APC interaction

during an unperturbed cell cycle. Small G, cells of a Myc78-HCT1
CDC16-HA3 Apep4 strain were released into glucose medium, and
samples were withdrawn at the indicated times (73). Clb5-Cdk1
activity was measured with the substrate histone H1. Control strains
(WT and CDC16-HA3) were grown in glucose medium. Graphs show
cellular DNA content. (D) Induction of Hct1-APC association by Cdk1
inactivation. A Myc9-HCT1 CDC23-HA3 Apep4 strain (WT) and a
congenic strain containing five copies of GALTp-SICT1-m3 (24) were
grown in raffinose medium at 25°C (cyc) and arrested with nocoda-
zole. Samples were taken at the indicated times after addition of
galactose and « factor (5 pg/ml).
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(75). (B) Cell cycle regulation of Het1 phospho-

rylation. HA3-Hct1 was detected in extracts C D
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phosphorylation sites (76) were expressed for 2 J *ggggngg%
hours from the GALL promoter in CLB2-myc12 Apep4 cells. Samples taken before (-) and after (+) promoter Clb5-HAS

induction were analyzed by immunoblotting. (D) Hct1 phosphorylation by Cdk1 in vitro. Purified MBP-Hct1 or
MBP-Hct1-m11 was incubated with [y-*?P|ATP and different Clb-HA3 immunoprecipitates (77). Phosphoryl-
ated MBP-Hct1 and cyclins were detected by autoradiography.
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could be detected in the mobility on SDS-
polyacrylamide gels of APC subunits iso-
lated from cycling cells and cells arrested
in G, phase by « factor or in M phase by
nocodazole (/2). However, the mobility of
Myc18-Hctl varied during the cell cycle
(Fig. 2C). To facilitate the analysis of this
mobility shift, we tagged Hctl with the
smaller HA3 epitope (/0). HA3-Hct]1 from
cycling cells migrated as multiple bands
(Fig. 3A). Phosphatase treatment of HA3-
Hctl immunoprecipitates (/5) eliminated
the upper bands, demonstrating that Hctl
was phosphorylated in vivo.
Phosphorylation of Hctl was then ana-
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lyzed in extracts from cells arrested at differ-
ent cell cycle stages (Fig. 3B). Hctl was
phosphorylated in cdc34 mutants, which ar-
rest before S phase with active Cln-Cdk1 but
inactive Clb-Cdkl kinases. Hctl was also
phosphorylated in cells arrested in S phase
with hydroxyurea, in M phase with nocoda-
zole, and in cdcl5 mutants, which arrest in
late anaphase. All of these cell cycle arrests
lead to the accumulation of active Clb-Cdk1
kinases. Hctl was apparently unphosphoryl-
ated in cells arrested in G, by « factor or by
a cdc28 mutation. Thus, Hetl might be phos-
phorylated in vivo by Cln- and Clb-Cdkl
kinases.
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Fig. 4. Regulation of APC-Hct1 asso- ¢ HAS-HCT1-m11 HAS-HCT1  HCT1 allele

ciation and cyclin proteolysis by Hct1
phosphorylation. Whole-cell extracts
and anti-Myc immunoprecipitates
were analyzed by immunoblotting.
GALLp-HA3-HCT1 (A) or GALLp-HA3-
HCT1-m11 (B) were expressed for 1
hour in CDC23 or CDC23-myc9 cells.
Small G, cells were isolated and re-
leased into raffinose-galactose medi-
um (raffgal) (73). The GALL promoter
was repressed by growth in glucose
medium (glc). Metaphase and an-
aphase spindles were detected by in-
direct  immunofluorescence.  (C)
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GALLp-HA3-HCT1 or GALLp-HA3-HCT1-m11 were expressed in nocodazole-arrested CDC76-myc6

or wild-type (WT) cells for the indicated times.
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Hctl contains 11 potential Cdk1 phospho-
rylation sites. To test whether these sites
were phosphorylated in vivo, we replaced
phospho-accepting serine and threonine
residues with alanine residues and ex-
pressed different HA3-HCTI mutants from
the weak, galactose-inducible GALL pro-
moter (Fig. 3C) (/6). The abundance of
low-mobility Hctl species decreased as
more potential phospho-acceptor sites were
removed. No cell cycle-regulated mobility
shift was detected with the mutants m9 and
ml1, which lack 9 or all 11 potential Cdk1
phosphorylation sites, respectively. Thus,
Hctl was phosphorylated at multiple sites
in vivo. There was an inverse correlation
between the number of phosphorylatable
residues and the ability of Hctl variants to
activate Clb2 degradation (Fig. 3C), sug-
gesting that phosphorylation could inhibit
Hctl activity.

To test whether Hctl was a Cdkl sub-
strate in vitro, we produced Hctl and Hctl-
mll in Escherichia coli as fusion proteins
with the maltose binding protein (MBP).
MBP, MBP-Hctl, and MBP-Hctl-ml11 were
purified and incubated with Clb2-, Clb3-, and
Clb5-Cdk1 kinases immunoprecipitated from
strains expressing HA3-tagged cyclins (/7).
MBP-Hctl but not MBP-Hctl-ml11 (or MBP
alone) was phosphorylated by all three ki-
nases (Fig. 3D). MBP-Hctl was also phos-
phorylated by CInl- and CIn2-Cdk1 (18).

To analyze the role of Hctl phosphoryl-
ation in vivo, we released small G, cells
expressing CDC23-myc9 and GALLp-HA3-
HCTI or GALLp-HA3-HCT!-m11] into a syn-
chronous cell cycle (Fig. 4, A and B). HA3-
Hetl and HA3-Hctl-m11 were produced in
similar amounts, and DNA replication and
budding occurred normally in both strains.
Unlike HA3-Hctl, the mutant protein was
neither phosphorylated nor released from
Cdc23-Myc9 as cells activated the CIb5-
Cdk1 kinase. HA3-HCT1-m11 cells failed to
accumulate the mitotic cyclins CIb2 and
Clb3, to form mitotic spindles, and to under-
go cytokinesis (Fig. 4B). Thus, Hctl phos-
phorylation was required for cell cycle events
depending on mitotic CDKs.

GALLp-HA3-HCT! and GALLp-HA3-
HCTI-mll were also expressed in nocoda-
zole-arrested CDC16-myc6 cells, which con-
tain high Clb-Cdk1 activity (Fig. 4C). Both
proteins accumulated to similar levels, and
HA3-Hct] but not HA3-Hctl-m11 was phos-
phorylated. HA3-Hctl neither coprecipitated
with Cdc16-Myc6 nor induced CIb2 proteol-
ysis, whereas HA3-Hctl-m11 both associated
with Cdc16-Mycé6 and triggered Clb2 prote-
olysis. Thus, Cdkl blocked the Hctl-APC
interaction by phosphorylation of Hctl.

Hctl was essential for APC-mediated
ubiquitination of mitotic cyclins in yeast. The
Hctl homologs of higher eukaryotes might
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perform similar functions. Drosophila fizzy-
related is required for cyclin removal during
G, in vivo (/9), and human Cdh1 binds to the
APC and stimulates cyclin-B ubiquitination
in vitro (20).

Hetl provides a regulatory link between the
two key regulators of cell cycle progression,
CDKs and the APC. Hctl-dependent cyclin-B
proteolysis during G, creates a state devoid of
Clb-Cdk1 activity, which is required for the
formation of replication-competent complexes
at chromosomal origins (27). As cells reach a
critical size in late G,, Hetl is inactivated by
Cdkl associated with Clnl, CIn2, or CIb5,
which are refractory to the activity of Hctl.
Cyclin-E-Cdk2 activity might have a similar
role in animal cells (/9). Once established,
Cdkl activity can be maintained by cyclins
such as Clb2 and CIb3 that are susceptible to
Hetl-dependent proteolysis.

Reactivation of Hetl during anaphase co-
incides with stabilization of Sicl, and both
events require dephosphorylation. These re-
actions might be catalyzed by the phospha-
tase Cdcl4, which is essential for inactivation
of mitotic CDKs (22) and whose overexpres-
sion causes cells to arrest with low Clb2
levels (23).

Cdc20 also binds to the APC and presum-
ably activates Pds! ubiquitination. Associa-
tion of Cdc20 occurred in the presence of
high Cdk1 activity, which inhibits Hetl. Pds1
degradation, which allows sister chromatid
separation, occurs while degradation of mi-
totic cyclins, which allows cytokinesis and
DNA rereplication, is still inhibited (6).
Thus, different properties of the APC activa-
tors Cdc20 and Hctl help to ensure that
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anaphase, cytokinesis, and DNA replication
occur in the right order.
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