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Control of Cyclin Ubiquitination 
by CDK-Regulated Binding of 

Hctl  to the Anaphase 
Promoting Complex 

Wolfgang Zachariae,* Michael Schwab,* Kim Nasmyth, 
Wolfgang Seufertt 

Proteolysis of mitotic cyclins depends on a multisubunit ubiquitin-protein 
ligase, the anaphase promoting complex (APC). Proteolysis commences during 
anaphase, persisting throughout G, until it is terminated by cyclin-dependent 
kinases (CDKs) as cells enter S phase. Proteolysis of mitotic cyclins in yeast was 
shown to require association of the APC with the substrate-specific activator 
Hct l  (also called Cdhl). Phosphorylation of Hct l  by CDKs blocked the Hctl-APC 
interaction. The mutual inhibition between APC and CDKs explains how cells 
suppress mitotic CDK activity during Gl and then establish a period with 
elevated kinase activity from S phase until anaphase. 

Entry into anaphase and exit from mitosis are 
promoted by APC-dependent proteolysis of 
regulatory proteins (I). Sister chromatid sepa- 
ration requires Pds l degradation shortly before 
anaphase onset, whereas Cdkl inactivation dur- 
ing late anaphase involves proteolysis of mitot- 
ic cyclins such as Clb2. How activity of the 
APC toward different substrates is regulated 
during the cell cycle is unclear. The APC itself 
might be regulated because the cyclin ubiquiti- 
naiion activity associated with purified APC 
fluctuates during the cell cycle (2, 3). APC- 
dependent proteolysis requires two related pro- 
teins containing Trp-Asp repeats which h c -  
tion as substrate-specific activators. Cdc20 pro- 
motes degradation of "early" substrates such as 
Pdsl and Hctl promotes degradation of "late" 
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substrates such k ~ l b 2  (4-6). In yeast, there is 
an inverse conelation between Cdkl activity 
and degradation of mitotic cyclins (7). Ectopic 
inhibition of Cdkl induces precocious cyclin 
degradation, suggesting a role for Cdkl in the 
inhibition of cyclin proteolysis from S phase 
until anaphase (8). However, the relevant Cdkl 
substrate has not been identified. 

To test whether Hctl is needed for cyclin 
ubiquitination, we incubated extracts from G,- 
arrested wild-type and hctl mutant cells with 
Clb2 and Clb3 (9). Wild-type extracts support- 
ed destruction box-dependent cyclin ubiquiti- 
nation, whereas hctl mutant extracts were as 
defective in this reaction as extracts from a 
cdc16-123 mutant that contains a defective 
APC subunit (Fig. 1). Thus, Hctl was required 
for APC-mediated cyclin ubiquitination. 

To test whether Hctl associated with the 
APC, we constructed CDC16-HA3 strains 
containing Hctl variants with Myc epitopes 
at the NH,-terminus (Myc9-Hctl) or the 
COOH-terminus (Hct 1 -Myc9) (10). HCTl- 
myc9 strains were defective in the degrada- 
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was fully functional. Cdc16-HA3 coprecipi- 
tated with Myc9-Hctl but not with Hctl- 
Myc9 in extracts prepared from cycling or 
G,-arrested cells (Fig. 2A) (11). Another 
APC subunit, Cdc23-HA3, also coprecipi- 
tated with Myc9-Hctl but not with Hctl- 
Myc9 (12). The correlation between Hctl 
function and coprecipitation with APC sub- 
units suggests that cyclin ubiquitination de- 
pends on an Hctl-APC interaction. 

Myc9-Hctl was not associated with Cdcl6- 
HA3 in extracts fiom cells arrested in S phase 
by hydroxyurea or in M phase by nocodazole 
(Fig. 2A). Cdc20, in contrast, was associated 
with APC subunits in both extracts (Fig. 2B). 
To test whether the Hctl-APC interaction was 
regulated during an un-d cell cycle, we 
measured the association between Mycl8-Hctl 
and Cdc16-HA3 in cells synchronized by cen- 
trifbgal elutriation (Fig. 2C) (13). Hctl was 
associated with Cdcl6 during G, but not during 
the S, G,, and M phases (14). Dissociation of 
Hctl fiom the APC correlated with appearance 
of the S phase promoting ClbS-Cdkl activity. 
Thus, the Hctl-APC interaction was cell cycle- 
regulated. 

The Hctl-APC interaction occurred only 

Fig. 1. Requirement of Hctl for ubiquitination 
of mitotic cyclins. Strains (MATa Apep4 Abar7) 
were arrested in Cl with a factor at 2S°C and 
shifted to 37OC for 30 min. Protein extracts 
were incubated with adenosine 5'-triphosphate 
(ATP) and HA3-tagged cyclins (9). CLbZADB 
lacks the destruction box. Cyclin-ubiquitin con- 
jugates were detected by immunoblotting with 
an antibody to the HA epitope. Molecular sizes 
in kilodaltons are indicated on the left. Ahct7 
mutants are partially resistant to cu factor. To 
allow complete arrest in C,, CLBZ was deleted 
(4). 
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in cells lacking Cdk l  activity. To test wheth- cells by  overproduction o f  the B-type cyclin- ciation o f  Myc9-Hctl  with Cdc23-HA3 and 
er Cdk l  might block the Hct l-APC interac- Cdk l  (Clb-Cdkl) inhibitor Sicl. We added a degradation o f  mitotic cyclins (Fig. 2D). 
tion, we inactivated all Cdk l  kinases in no- factor pheromone to inhibit G ,  cyclin-Cdkl Either the APC or H c t l  might be regu- 
codazole-arrested Myc9-HCTl CDC23-HA3 (Cln-Cdkl). Cdkl  inactivation induced asso- lated by  C d k l  activity. N o  differences 

A CYC a-factor nm hu 6 cyc hu noc --- 
- N - C - N - C - N - C - N - Myc-taggedHCT7 - + - - + - - + - Mycl8-CDC20 
- + + + - + + + - + + + - + + CDC16-HA3 - + + - + + - + + CDCI6-HA3 

I - -  - . )  4 Myc9-Hctl Hctl -Myc9 C - +Mycl8-Cdc20 I - 
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Fig. 2. Binding of Hc t l  and CdcZO to  the APC during the cell cycle. 
Whole-cell extracts (WCE) and proteins immunoprecipitated with an 
antibody to  Myc (a-Myc IP) were analyzed by immunoblotting. (A) 
Hctl-APC association at different cell cycle stages. Strains contained 
wild-type proteins (-) or Cdc16-HA3 (+) and Hc t l  carrying a NH,- 
terminal (N) or a COOH-terminal (C) Myc9 tag. Cells were grown at 
25OC (cyc) and arrested with a factor, hydroxyurea (hu), or nocoda- 
zole (noc). (B) Cdc2O-APC association in cells containing high Cdkl 
activity. Strains containing wild-type genes (-) or CDC76-HA3 (+) 
and Myc78-CDC2O (+) were grown at 30°C (cyc) and arrested with 
hydroxyurea (hu) or nocodazole (noc). (C) Hctl-APC interaction 

during an unperturbed cell cycle. Small G, cells of a Myc78-HCT7 
CDC76-HA3 Apep4 strain were released into glucose medium, and 
samples were withdrawn at the indicated times (73). Clb5-Cdkl 
activity was measured with the substrate histone HI .  Control strains 
(WT and CDC76-HA3) were grown in glucose medium. Graphs show 
cellular DNA content. (D) Induction of Hctl-APC association by Cdkl 
inactivation. A Myc9-HCT7 CDC23-HA3 Apep4 strain (WT) and a 
congenic strain containing five copies of CAL7p-SIC7-m3 (24) were 
grown in raffinose medium at 2S°C (cyc) and arrested with nocoda- 
zole. Samples were taken at the indicated times after addition of 
galactose and a factor (5 pglml). 

Fig. 3. Phosphorylation of Hct l  by Cdkl. (A) A 8 2 'a P 
Modification of Hct l  by phosphorylation in ry m g a-HA 1P 
vivo. HA3-Hal was detected by immunoblot- - \NT s $ $ g  
ting in whole-cell extracts (WCE) or anti-HA $ 2 5  - ---- 
immunoprecipitates (a-HA IP) prepared from - g a 2 A $  ghgkgngb 
growing HA3-HCT7 cells. Precipitates were in- - u && 3-H~tl  cubated with (+) or w~thout (-) alkaline phos- 
phatase (CIP) and phosphatase inhibitors (Inh) - - -+lgc 

1 - =m.. ip. .~w&;~;-@ 
(75). (0)  Cell cycle regulation of Hct l  phospho- 
rvlation. HA3-Hctl was detected in extracts C D 
6om growing cells (cyc), from cells arrested 

C 85.2 Ill-t I with CK factor (a), hydroxyurea (hu), nocod?--'- - - - - - - - 
(noc) and from wild-type (WT) or mu - + - + - + - + - + - + -  
(cdc75-2, cdc28-4, cdc34-7) HA3-HCT7 
grown at 25OC and then shifted to  37OC f 
hours. ICI Hct l  ohosohorvlation at Cdkl con- 

n l  1 HCTl allele MBP- MBP- 
Hctl Hctl-rnl 1 

duction -- - o N 0 N CIb-HA3- P e e  e e s  
-Hal-fm u o o u o o Cdkl 

,,."kc 

~tant 
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'or 3 
- - -  

- + gal. in 
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sensus ;lies. HA~-HC?~ ( k T )  and alleles lack- , ,,__-_ -_ - _ - a ing the indicated number of potential Cdkl 
phbsphorylation sites (76) wereexpressed for 2 
hours from the CALL promoter in CLBZ-myc72 Apep4 cells. Samples taken before (-) and after (+) promoter .@-I 
induction were analyzed by immunoblotting. (D) H a l  phosphorylation by Cdkl in vitro. Purified MBP-Hctl or 
MBP-Hctl-mll was incubated with [y-32P]ATP and different Clb-HA3 imrnunoprecipitates (77). Phosphoryl- 
ated MBP-Hctl and cyclins were detected by autoradiography. 
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could be detected in the mobility on SDS- 
polyacrylamide gels of APC subunits iso- 
lated from cycling cells and cells arrested 
in G,  phase by a factor or in M phase by 
nocodazole (12). However, the mobility of 
Mycl8-Hctl varied during the cell cycle 
(Fig. 2C). To facilitate the analysis of this 
mobility shift, we tagged Hctl with the 
smaller HA3 epitope (10). HA3-Hctl from 
cycling cells migrated as multiple bands 

lyzed in extracts from cells arrested at differ- 
ent cell cycle stages (Fig. 3B). Hctl was 
phosphorylated in cdc34 mutants, which ar- 
rest before S phase with active Cln-Cdkl but 
inactive Clb-Cdkl kinases. Hctl was also 
phosphorylated in cells arrested in S phase 
with hydroxyurea, in M phase with nocoda- 
zole, and in cdcl5 mutants, which arrest in 
late anaphase. All of these cell cycle arrests 
lead to the accumulation of active Clb-Cdkl 

Hctl contains 11 potential Cdkl phospho- 
rylation sites. To test whether these sites 
were phosphorylated in vivo, we replaced 
phospho-accepting serine and threonine 
residues with alanine residues and ex- 
pressed different HA3-HCTI mutants from 
the weak, galactose-inducible GALL pro- 
moter (Fig. 3C) (16). The abundance of 
low-mobility Hctl species decreased as 
more potential phospho-acceptor sites were 

(Fig. 3A). Phosphatase treatment of HA3- kinases. Hctl was apparently unphosphoryl- 
Hctl immunoprecipitates (15) eliminated ated in cells arrested in G,  by a factor or by 

removed. No cell cycle-regulated mobility 
shift was detected with the mutants m9 and 
m l l ,  which lack 9 or all 11 potential Cdkl 
phosphorylation sites, respectively. Thus, 

the upper bands, demonstrating that Hctl a cdc28 mutation. Thus, Hctl might be phos- 
was phosphorylated in vivo. phorylated in vivo by Cln- and Clb-Cdkl 

Phosphorylation of Hctl was then ana- kinases. Hctl was phosphorylated at multiple sites 
in vivo. There was an inverse correlation 
between the number of phosphorylatable 
residues and the ability of Hctl variants to 
activate Clb2 degradation (Fig. 3C), sug- 
gesting that phosphorylation could inhibit 
Hctl activity. 

To test whether Hctl was a Cdkl sub- 
strate in vitro, we produced Hctl and Hctl- 
m l l  in Escherichia coli as fusion proteins 
with the maltose binding protein (MBP). 
MBP, MBP-Hctl, and MBP-Hctl-ml 1 were 
purified and incubated with Clb2-, Clb3-, and 
ClbS-Cdkl kinases immunoprecipitated from 
strains expressing HA3-tagged cyclins (1 7). 
MBP-Hct 1 but not MBP-Hct 1-ml 1 (or MBP 
alone) was phosphorylated by all three ki- 
nases (Fig. 3D). MBP-Hctl was also phos- 
phorylated by Clnl- and Cln2-Cdkl (18). 

To analyze the role of Hctl phosphoryl- 

A GALLp-HA3-HCT1 CDC23-my& Time Spindles (%) 
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a  0' E 5 o E 9 1 2 19 66 91 99 93 92 96 Budding (YO) 
180 2 2 

I kCd~23-myc9 160 2 2 
140 3 5 

WCE 

ation in vivo, we released small G, cells 
expressing CDC23-myc9 and GALLp-HA3- 
HCTl or GALLp-HA3-HCTI-mll into a syn- 
chronous cell cycle (Fig. 4, A and B). HA3- 
Hctl and HA3-Hctl-ml l were produced in 
similar amounts, and DNA replication and 
budding occurred normally in both strains. 
Unlike HA3-Hctl, the mutant protein was 
neither phosphorylated nor released from 
Cdc23-Myc9 as cells activated the Clb5- 
Cdkl kinase. HA3-HCTI-mll cells failed to 
accumulate the mitotic cyclins Clb2 and 
Clb3, to form mitotic spindles, and to under- 
go cytokinesis (Fig. 4B). Thus, Hctl phos- 
phorylation was required for cell cycle events 
depending on mitotic CDKs. 

GALLp-HA3-HCTI and GALLp-HA3- 
HCTI-mll were also expressed in nocoda- 
zole-arrested CDC16-myc6 cells, which con- 
tain high Clb-Cdkl activity (Fig. 4C). Both 
proteins accumulated to similar levels, and 
HA3-Hctl but not HA3-Hctl-mll was phos- 
phorylated. HA3-Hctl neither coprecipitated 
with Cdcl6-Myc6 nor induced Clb2 proteol- 
ysis, whereas HA3-Hct l -ml 1 both associated 
with Cdc 16-Myc6 and triggered Clb2 prote- 
olysis. Thus, Cdkl blocked the Hctl-APC 
interaction by phosphorylation of Hctl. 

Hctl was essential for APC-mediated 
ubiquitination of mitotic cyclins in yeast. The 
Hct 1 homologs of higher eukaryotes might 

- - DO +Cdc23-myc9 160 3 12 

r 140 19 40 
HA3-Hctla 120 

+HAS-Hctl mt 100 41 11 26 4 

- eClb2 80 0 0 
60 0 0 

2lb3 40 0 1 

- 
WCE -- 

Fig. 4. Regulation of APC-Hctl a! 
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direct immunofluorescence. (C) I 
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perfor111 sinlilar filnctions. Di.oso11hiln fizzy- 
related is required for cyclin removal during 
G,  in 1-i\ o ( 19) ,  and human Cdhl binds to the 
APC and stinlulates cyclin-B ~tbiquiti~lation 
in vitro (20) .  

Hctl pro!-ides a regulatory link between the 
m;o key regulators of cell cycle progression; 
CDKs and the APC. Hctl-dependent cyclin-B 
proteolysis during G, creates a state del-oid of 
Clb-Cdkl activiQ; v-hich is required for the 
formation of replication-competalt comnplexes 
at chromosomal origins (21).  As cells reach a 
critical size in late G,. Hctl is inactivated by- 
Cdkl associated with Clnl. C1112. or ClbS. 
w7hich are rekactov to the activity of Hctl. 
Cyclin-E-Cdk2 activity might ha\-e a sinlilar 
role in animal cells (19). Once established. 
Cdkl activity can be maintained by cyclins 
such as Clb2 and Clb3 that are susceptible to 
Hctl-dependent proteolysis. 

Reactivation of Hctl during anaphase co- 
incides with stabilization of Sicl .  and both 
events require dephospho1ylatio11. These re- 
actions might be catalyzed by the phospha- 
tase C d c l l .  which is essential for inactivation 
of mitotic CDKs (22) and whose owrespres- 
sion causes cells to arrest wit11 lo\v Clb2 
levels (23). 

CdcZO also binds to the APC and presunl- 
ably activates Pdsl ubiquitination. Associa- 
tion of Cdc20 occurred in the presence of 
high Cdkl activity. which inhibits Hctl .  Pds 1 
degradation, n-hich allo\vs sister chromatid 
separation, occurs n,hile degradation of mi- 
totic cyclins. which allows cytoltinesis and 
DKA rereplication, is still inhibited (6). 
Thus; different properties of the APC activa- 
tors Cdc20 and Hctl help to ensure that 

anaphase. cytol<inesis, and DNA replication 
occur in the right order. 
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