cetaceans would help distinguish between causes of low mtDNA diversity that operate maternally (such as cultural hitchhiking or selection on the mtDNA genome) or nonmaternally (such as population bottlenecks).

The apparently greater role of cultural inheritance among cetaceans compared with nonhuman terrestrial mammals is likely ultimately linked to environmental differences. Compared with most terrestrial environments, the ocean can support large body sizes, has low travel costs and no barriers, contains dispersed and patchy food, and transmits sound very efficiently. The behavior and social structure of cetaceans seem to have evolved distinctive features in this setting. These features include vocal learning, large home ranges, lack of territoriality, and bisexual group philopatry (1). Cultural transmission may be another such feature favored by the environment of the matrilineal whales.

References and Notes

- R. C. Connor *et al.*, *Trends Ecol. Evol.* **13**, 228 (1998).
 P. J. Palsbøll, M. P. Heide-Jørgensen, R. Dietz, *Heredity*
- 78, 284 (1997).3. Although the nucleotide diversity of killer whales in
- Table 1 uses only North Pacific animals, much of the worldwide genetic diversity of this species is in the North Pacific [A. R. Hoelzel, *Rep. Int. Whaling Comm.* **13** (special issue), 225 (1991)].
- Substitutions per site in the first 400 base pairs (bp) of the mtDNA control region compared with an outgroup, the cow, are as follows: sperm whale, 0.54; pilot whale, 0.50; killer whale, 0.49; fin whale (*Balaenoptera physalus*), 0.45; minke whale (*B. acutorostrata*), 0.47; and Commerson's dolphin (*Cephalorhynchus commersonii*), 0.46. Sequences are from M. C. Dillon and J. M. Wright [*Mol. Biol. Evol.* **10**, 296 (1993)] and (8), aligned by ClustalW [D. G. Higgins, A. J. Bleasby, R. Fuchs, *Comput. Applic. Biosci.* **8**, 189 (1991)]. Substitution rates are from equations 1 and 2 of C.-I. Wu and W. H. Li [*Proc. Natl. Acad. Sci. U.S.A.* **82**, 1741 (1985)].
- C. W. Birky, T. Maruyama, P. Fuerst, *Genetics* 103, 513 (1983).
- T. Lyrholm and U. Gyllensten, Proc. R. Soc. London B 265, 1679 (1998).
- 7. B. Amos, Rep. Int. Whaling Comm. 46, 657 (1996).
- 8. L. A. Siemann, dissertation, Massachusetts Institute of
- Technology, Cambridge (1994). 9. S. Brault and H. Caswell, *Ecology* **74**, 1444 (1993).
- 10. F. Tajima, *Genetics* **123**, 585 (1989).
- R. Boyd and P. Richerson, *Culture and the Evolution-ary Process* (Univ. of Chicago Press, Chicago, 1985).
- 12. N. L. Kaplan, R. R. Hudson, C. H. Langley, *Genetics* **123**, 887 (1989).
- 13. J. R. Heimlich-Boran and S. L. Heimlich-Boran, Symp. Zool. Soc. London, in press.
- 14. V. M. Janik and P. J. B. Slater, *Adv. Study Behav.* **26**, 59 (1997).
- J. K. B. Ford, *Can. J. Zool.* **69**, 1454 (1991); L. Weilgart and H. Whitehead, *Behav. Ecol. Sociobiol.* **40**, 277 (1997).
- 16. H. Whitehead et al., J. Anim. Ecol. 67, 253 (1998).
- 17. Simulations used a modified version of the model in Fig. 1, with a population size of 10^5 , a mutation rate of 7.5 $\times 10^{-9}$ /year, a generation time of 15 years, and 400 bp sequenced, as well as four other combinations of population size and mutation rate. Runs were made with maternally transmitted dialects mutating into different forms at rates of two, four, and (when computationally manageable) eight times the haplotype mutation rate. The gene-dialect relation was measured by Goodman-Kruskal's λ , which indicates the ability of one categorical variable to improve predictions of the other: 0.0 is no predictive ability, and 1.0 is perfect predictive ability. Long-term

values of λ fell below 0.55 when nonmaternal transmission of dialect was introduced at \geq 10 times the haplotype mutation rate and to below 0.22 (usually below 0.1) when transmission of dialect was >100 times the haplotype mutation rate, equivalent to nonmaternal cultural transmission rate upper bounds of 0.045%/generation and 0.45%/generation, respectively, in the most realistic simulations.

- H. Whitehead, S. Waters, T. Lyrholm, *Behav. Ecol.* Sociobiol. 29, 385 (1991).
- 19. H. Whitehead, J. Anim. Ecol. 65, 429 (1996).
- 20. K. N. Laland, Ethol. Sociobiol. 13, 87 (1992).
- 21. T. J. Roper, Sci. Prog. 70, 571 (1986).
- H. Whitehead and J. Mann, in *Cetacean Societies*, J. Mann et al., Eds. (Univ. of Chicago Press, Chicago, in press).
- P. J. Richerson and R. Boyd, in *Ideology, Warfare and Indoctrinability*, I. Eibl-Eibesfeldt and F. Salter, Eds. (Berghahn Books, London, in press).
- 24. I. Bakke et al., Mar. Biol. 125, 1 (1996).
- 25. P. J. Palsbøll et al., Mar. Ecol. Prog. Ser. **116**, 1 (1995). 26. C. S. Baker et al., Proc. Natl. Acad. Sci. U.S.A. **90**,
- 8239 (1993).
 J. G. Brown Gladden, M. M. Ferguson, J. W. Clayton, *Mol. Ecol.* 6, 1033 (1997).
- A. E. Dizon, C. A. Leduc, R. G. Leduc, *Calif. Coop.* Oceanic Fish. Invest. Rep. **35**, 61 (1994).
- P. E. Rosel, A. E. Dizon, J. E. Heyning, *Mar. Biol.* **119**, 159 (1994).
- P. E. Rosel, A. E. Dizon, M. G. Haygood, Can. J. Fish. Aquat. Sci. 52, 1210 (1995).
- 31. F. B. Pichler et al., Conserv. Biol. 12, 676 (1998).
- 32. C. A. Lux, A. S. Costa, A. E. Dizon, Rep. Int. Whaling
- Comm. 47, 645 (1997).
 33. I. Archer, dissertation, University of California, San Diego (1996).
- M. C. Dillon, dissertation, Dalhousie University, Halifax, Nova Scotia, Canada (1996).
- A. R. Hoelzel, M. Dahlheim, S. J. Stern, J. Hered. 89, 121 (1998).

- A. P. Martin and S. R. Palumbi, Proc. Natl. Acad. Sci. U.S.A. 90, 4087 (1993).
- T. A. Jefferson *et al.*, in *Handbook of Marine Mammals*, S. H. Ridgway and R. Harrison, Eds. (Academic Press, London, 1994), vol. 5, pp. 355–362.
- M. Klinowska, Dolphins, Porpoises and Whales of the World. The IUCN Red Data Book (IUCN, Gland, Switzerland, 1991); P. R. Wade and T. Gerrodette, Rep. Int. Whaling Comm. 42, 533 (1992); S. T. Buckland et al., *ibid.* 14 (special issue), 33 (1993); J. Barlow, Fish. Bull. U.S. 93, 1 (1995).
- The number of daughters of a female was Poisson 39. distributed with mean Ks/P, where P is the current female population size, s is the selective advantage of the female (1.1 for females with the trait and 1.0 for those without), and K is the carrying capacity (200,000 females). All descendants of females with a particular mtDNA haplotype carried that haplotype, except a proportion μbg (where μ is the mutation rate, set to 7.5 \times 10⁻⁹/year [A. R. Hoeltzel, J. M. Hancock, G. A. Dover, Mol. Biol. Evol. 8, 475 (1991)], b is the number of base pairs being considered (300), and g is the generation length (15 years)} carrying novel haplotypes, different from the maternal haplotype at one base pair. The four populations, initially mitochondrially homogeneous, ran for 330,000 generations to stabilize haplotype and nucleotide diversities and then, in each situation (Fig. 1, A to D), for an additional 300 generations to indicate the dynamics of the nucleotide diversity. Runs in which the cultural trait drifted to extinction were discarded.
- 40. This research was funded by the Natural Sciences and Engineering Research Council of Canada. I thank S. Dufault for gathering and processing data; R. Baird, A. Horn, D. Ruzzante, and L. Weilgart for information and ideas; and R. Baird, J. Christal, R. C. Connor, A. Horn, K. Laland, E. Zouros, and two anonymous reviewers for comments on the manuscript.

4 March 1998; accepted 20 October 1998

Zebrafish *hox* Clusters and Vertebrate Genome Evolution

Angel Amores, Allan Force, Yi-Lin Yan, Lucille Joly, Chris Amemiya, Andreas Fritz, Robert K. Ho, James Langeland, Victoria Prince, Yan-Ling Wang, Monte Westerfield, Marc Ekker,* John H. Postlethwait*†

HOX genes specify cell fate in the anterior-posterior axis of animal embryos. Invertebrate chordates have one HOX cluster, but mammals have four, suggesting that cluster duplication facilitated the evolution of vertebrate body plans. This report shows that zebrafish have seven *hox* clusters. Phylogenetic analysis and genetic mapping suggest a chromosome doubling event, probably by whole genome duplication, after the divergence of ray-finned and lobefinned fishes but before the teleost radiation. Thus, teleosts, the most speciesrich group of vertebrates, appear to have more copies of these developmental regulatory genes than do mammals, despite less complexity in the anteriorposterior axis.

HOX cluster genes encode DNA binding proteins that specify fate along the anterior-posterior axis of bilaterian animals (1). Remarkably, the order of HOX genes along the chromosome reflects the order they act along the body (2). Invertebrate chordates have one HOX cluster and little axial diversity, but tetrapods have four clusters and substantial axial complexity (3). Tetrapod clusters arose by duplications of an ancestral cluster containing 13 genes (4). Although it is widely assumed that vertebrates have four HOX clusters, initial studies of teleost fish, the most diverse group of vertebrates, revealed unexpected HOX genes (5–8). To understand this problem, we isolated *hox* clusters from the zebrafish *Danio rerio*.

To complement previous surveys of zebrafish *hox* gene fragments (7, 8), we identified genomic DNAs in P1 artificial chromosomes (PACs), using degenerate primers to amplify homeoboxes (9). We then identified overlapping PACs in chromosome walks, inventoried their *hox* gene content using redundant primers, sequenced gene coding regions, and analyzed gene phylogenies (10). These experiments identified seven *hox* clusters containing 40 of the 41 previously identified zebrafish *hox* genes, seven new *hox* genes, one *hox* pseudogene, and *evx1* (Fig. 1). Although we tried to find all genes in each cluster, it is possible that additional genes or pseudogenes exist that do not amplify with our primers.

Phylogenetic analysis of sequence data (11) assigned zebrafish genes to one of 13 paralogy groups. Groups 4 and 9 appear in each mammalian cluster and in four zebrafish clusters, so we joined the nucleotide sequences of these groups, removed nonalignable sequence, and constructed a phylogenetic tree. The results showed (Fig. 2A) that each of these four clusters is orthologous to one of the four mammalian clusters. Hence, the duplication events that produced the four mammalian clusters occurred before the divergence of ray-finned and lobe-finned lineages about 420 million years ago (12).

Further analysis revealed the origin of the other three zebrafish hox clusters. The group 6 tree showed that zebrafish has two orthologs of mammalian HOXB6, called hoxb6a and hoxb6b (Fig. 2B). The group 5 nucleotide tree confirmed duplicate hoxb clusters (Fig. 2C). Likewise, zebrafish has two orthologs of mammalian HOXC6, called hoxc6a and hoxc6b (Fig. 2B). To investigate HOXA clusters, we joined and aligned the homeodomains of groups 9, 11, and 13, which allows comparison with the pufferfish Fugu (for which only the amino acid sequence of the homeobox is available). This tree (Fig. 2D) shows that zebrafish has two clusters orthologous to the mammalian HOXA cluster. These data suggest that all hox clusters duplicated in the lineage that led to zebrafish after it diverged from the lineage that led to tetrapods, with subsequent loss of one hoxd cluster. The divergent Fugu Hoxd cluster (5) branches with high bootstrap value (965) with the HOXA clusters of other vertebrates (Fig. 2D). We conclude that Fugu has two orthologs of

A. Amores, A. Force, Y.-L. Yan, Y.-L. Wang, M. Westerfield, J. H. Postlethwait, Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA. L. Joly and M. Ekker, Loeb Institute of Medical Research, Ottawa Civic Hospital, Ottawa, Ontario K1Y 4E9, Canada. C. Amemiya, Center for Human Genetics, Boston University School of Medicine, Boston, MA 02118, USA. A. Fritz, Department of Biology, Emory University, Atlanta, GA 30322, USA. R. K. Ho, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. J. Langeland, Biology Department, Kalamazoo College, Kalamazoo, MI 49006, USA. V. Prince, Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.

*The experiments reported here were conducted in the laboratories of these authors.

†To whom correspondence should be addressed.

the tetrapod *HOXA* cluster and no described *Hoxd* cluster.

Comparative analysis of cluster content il-

A. ev	x 13 1 AC13H7	2 11 10 9	8 7 6 PAC24117	354	3 2 1 PAC227P6
Dre aa 🚽			ļ		
PAC	261G10	PAC107M8		PAC31B1	14
Dre ab 🗕			J		
Fru A 📕	D-0			-@-@-	-@-@-@-
Fru D 🗕		<u> -@-@-¢</u>		· · ·	
Mmu A -	D-D	-0-0- ¢)®)C)-O-O-	-@-@-@-
в.		PAC227412		PA	40254017
Dre ba					
PAG	C225M6	PAC120L2		PAC227H	19
Dre bb 🗕					
Fru B 🗕		B			-@-@-@-
Mmu B 🗕		¢	-0-0-0)-0- 0-	-0-0-
^ D/	107046			PACON	10
		PAC207A17		PACSON	
P	AC52D1	PAC17P1		PAC123F	11
Dre cb		FACI/BI			
Fru C -			-		<u> -</u>
Mmu C -					<u> </u>
_					
D. <u>P/</u>	AC46C4			PAC380	9
A. 679 773 852 723 697			-Hsa 	Dre HOXA2 Dre hox Hoxb4; mu Hox Dre h Isa HO	hoxa4a, a9a 4, A9 b4a, b9a , b9 kc4, c9 oxc4a, c9a XD4, D9 Dre hoxd4a,
B. 937 655 1 1000	000 000 522 4 91		Hsa <i>H</i> Hsa <i>H</i> Mmu Hsa Mmu Nvi Xla	IOXA6 IOXB6 Hoxb6 Dre h a HOX Hoxc6 Fru Ho Dre Dre 6w	0.02 Ore hoxb6b oxb6a C6 xc6 xc6 xc6 xc-6 hoxc6a ore hoxc6b
		1000		-Hsa	0. HOXA5
C .	982	000		Hsa H Mm	Diu Hoxa5 Dre hoxa OXB5 Hoxb5
	754	998			Dre hoyhe

luminates the history of HOX cluster duplication. The (AB)(CD) model (13) suggests two sequential duplications, giving a proto-AB clus-

> Fig. 1. Organization of vertebrate HOX clusters. Each horizontal thick line represents a cluster, designated by species abbreviation followed by cluster name. Species designations are as follows: zebrafish (Dre), black squares; Fugu (Fru), gray squares; mouse (Mmu), pale gray squares. Parts (A) to (D) display HOX clusters from different species. Clusters are organized from the 5' end (paralogy group 13) to the 3' end (paralogy group 1), with the even-skipped homologs of the evx family at the 5' end of the clusters. Clones from the PAC library (19) are shown above each zebrafish cluster. The known content of each PAC is represented by black or gray squares (genes) and open squares (pseudogenes). The orphan hox genes hoxx4, hoxx9, and hoxy6 (7, 8) are synonymous with hoxa4a, hoxa9a, and hoxc6b. Chromosome walks show that genes formerly thought to represent the hoxa cluster (7) are split into the hoxab and hoxbb clusters.

d9a 5a Dre hoxb5b Dre hoxb5a Hsa HOXC5 Mmu Hoxc5 Dre hoxc5a Pma *ho<u>x-5</u>w* Hsa HOXA9, 11, 13
 Dre hoxa9b, 11b, 13b 0.02 Dre hoxa9a, 11a, 13a Fru Hoxd9, 11, 13 Mmu Hoxd9. 11. 13 runs. Dre hoxd9a, 11a, 13a •Mmu *Hoxc9, 11, 13* Dre hoxc9a, 11a, 13a •Fru *Hoxc-9, -11, -13* 0.02

Fig. 2. Phylogenetic analysis. (A) The tree constructed by joining homeodomain sequences of group 4 and 9 genes shows that zebrafish (Dre) has orthologs of each human (Hsa) and mouse (Mmu) HOX cluster. (B) The group 6 tree shows that zebrafish has two copies of mammalian HOXB and HOXC clusters. Furthermore, Fugu (Fru) Hoxc6 is closely related to just one of the zebrafish genes, suggesting that duplication occurred before the divergence of Fugu and zebrafish lineages. This tree is rooted on the lamprey (Petromyzon marinus, Pma) hox-6w sequence. (Xla, Xenopus laevis; Nvi, Notophthalmus viridescens.) (C) The group 5 tree confirms cluster orthologies and duplications. (D) The tree constructed by joining homeodomains of groups 9, 11, and 13 shows that zebrafish has two orthologs of the mammalian HOXA cluster, and the Fugu Hoxd cluster branches with HOXA clusters of other vertebrates. Numbers at nodes indicate bootstrap values for 1000

D.

REPORTS

ter and a proto-*CD* cluster after the first event. The alternative (D(A(BC))) model (14) suggests three duplications, the first producing the *D* and proto-*ABC* clusters, the second giving the *A* and proto-*BC* clusters, and the third providing the *B* and *C* clusters. Cladistic analysis of cluster content favors the (AB)(CD) model (Fig. 3). For example, loss of group 12 is a shared derived characteristic of teleost and tetrapod *HOXA* and *HOXB* clusters, and loss of groups 2 and 7 unites *HOXC* and *HOXD* clusters. This model minimizes the number of convergent gene losses and is also independently supported by sequence analysis (Fig. 2C).

Superimposed on shared gene loss is lineage-specific loss. For example, fish have lost genes present in mammals (hoxa6, hoxa7, hoxd1, and hoxd8). Reciprocally, mammals have lost paralogs present in teleosts (hoxb10a and eve1). We conclude that the degeneration of HOX clusters continued in both lineages after the divergence of rayfinned fish and the lobe-finned ancestors of tetrapods. Furthermore, hox cluster degeneration may be ongoing, at least in fish, because hoxc1a and hoxc3a are active in zebrafish but their orthologs are pseudogenes in Fugu (5) and are absent from mammals; likewise, hoxa10a is a pseudogene in zebrafish but has normal structure in Fugu and mouse.

When did the latest *HOX* cluster duplication

occur in the zebrafish lineage? The pattern of shared gene loss suggests that the last common ancestor of zebrafish and Fugu already had duplicated HOX clusters (Fig. 3E). Gene phylogenies support this conclusion, because Fugu Hoxc-6, the only informative full-length sequence available (5), is more closely related to zebrafish hoxc6a than it is to hoxc6b (Fig. 2B). In addition, the presence of two HOXA clusters in Fugu, one related to the zebrafish hoxaa and the other to the hoxab cluster (Fig. 1), supports a shared duplication. The presence in killifish (7) of five group 9 and four group 1 genes as in zebrafish, rather than four group 9 and three group 1 genes as in mammals, is consistent with the hypothesis that the killifish lineage also

cluster, and groups 5 and 6 from the HOXD cluster; subsequently, the tetrapod lineages lost HOXC1, HOXC3, and an EVX gene from the HOXB cluster (**D**). Finally, an apparent duplication event produced eight clusters in a ray-finned fish (**E**), followed by further shared and unique losses in zebrafish (**F**) and Fugu (**G**) lineages.

НОХА	НОХВ	НОХС	HOXD
LG16 Hsa7 LG19 hoxab HOXA hoxaa EVX1 evx1 DLX6 dlx6 LG7 DLX5 dlx4 NPY npy eng2 EN2 eng3 shh SHH twhh INHBA LG2 TWIST WNT2 GLI3 cycd1 CCND1 fgf3 FGF3	LG12 Hsa17 Mmu11 LG3 hoxbbHOXB HOXB hoxba eve1 dlx7 DLX7 dlx8 dlx3 DLX3 PYY Pyy pyy WNT3 Wnt3 rara2aRARA Rara rara2b GFAP Gfap THRA1Thra tra1 hbae4 Hba hbae1 CDC27Cdc27cdc27	LG23 Hsa12Mmu15 LG11 hoxca HOXCHoxc hoxcb Mmu10 dhh Dhh INHBC Inhbc wnt1 WNT1 Wnt1 GLI Gli gli rarg RARGRarg PRPH Prph VDR tara ACVRLK1 pouc Emb myb Myb	LG9 Hsa2 Mmu2 hoxda HOXDHoxd evx2 EVX2 Evx2 dix1 DLX1 Dix1 LG1 dix2 DLX2 Dix2 Mmu1 dix5 eng1 EN1 En1 eng1b hha HH Ihh ehh actbb INHBB Inhbb LG6 dermo DERMO GL12 Gli2 Rxra Rxrg des DES Des CRNA1Acra nic1 acvr2a Acvr2a bm1.1 Brn1 brn1.2 Gdf5 contact Ddx3 p110a

Fig. 4. HOX cluster duplication involved large chromosome segments. The diagram shows syntenic relationships among HOX containing chromosomes of human (Hsa), mouse (Mmu), and zebrafish linkage groups (LG). Vertical gray lines indicate a group of genes on the same chromosome (syntenic loci), with order ignored to facilitate the comparison of orthologs and paralogs. Horizontal gray lines connect presumed orthologs within chromosome groups as well as paralogs between chromosome groups.

REPORTS

experienced an "extra" duplication event. This suggests that a fish-specific *HOX* cluster duplication occurred before the divergence of *Fugu* and zebrafish lineages more than 150 million years ago (15), but after the divergence of ray-finned and lobe-finned lineages. Goldfish, salmonids, and some other teleosts have experienced additional, more recent polyploidization events (16). Genomic analysis of basally branching ray-finned fish, such as sturgeons, *Amia*, or *Polypterus*, is necessary to clarify the timing of the *HOX* duplication event.

To determine whether "extra" fish hox clusters result from tandem duplication or chromosome duplication in fish, or cluster loss in tetrapods, we mapped zebrafish *hox* clusters: cloned, sequenced, and mapped four new genes whose orthologs are syntenic with HOX clusters in mammals (*dhh*, *evx1*, *eng1b*, and *gli*); and mapped four previously unmapped zebrafish genes [dlx5, dlx6, dlx8, and pl10a; see (11)] whose orthologs are linked to HOX clusters in mammals. These experiments showed that zebrafish has two copies of each HOX chromosome segment in mammals (Fig. 4). For example, the human and mouse HOXB chromosomes have six and four genes, respectively, whose apparent orthologs map on one of the two zebrafish chromosomes containing hoxba or hoxbb (Fig. 4). Each of these two chromosomes also has one copy of other duplicate genes, including *dlx7/dlx8*, *rara2a/rara2b*, and hbae4/hbae1 (11, 17). We conclude that zebrafish has two copies of this mammalian chromosome segment. Because similar results were obtained for the other clusters (Fig. 4), we infer that hox cluster duplication in ray-finned fish occurred by whole chromosome duplication. Although we found a single hoxd cluster in zebrafish, mapping experiments identified the predicted duplicate chromosome segments (Fig. 4), suggesting secondary loss of one hoxd duplicate.

These results suggest two rounds of HOX chromosome duplication (probably whole genome duplication) before the divergence of rayfinned and lobe-finned fishes, and one more in ray-finned fish before the teleost radiation. Because gene duplicates often have a subset of the functions of the ancestral gene (18), mutations in duplicate genes may reveal essential functions that otherwise might remain hidden. For example, if a gene is essential for distinct early and late functions, a lethal mutation knocking out the early function might obscure the late function in a mutant mammal, but both functions would be evident if the two functions assort to different zebrafish gene duplicates. The conclusion that the genetic complexity of hox clusters in teleost fish has exceeded that of mammals for more than 100 million years calls into question the concept of a tight linkage of HOX cluster number and morphological complexity along the body axis. However, because

teleosts are the most species-rich group of vertebrates and exhibit tremendous morphological diversity, it is tempting to speculate that the duplication event detected here may have provided gene copies that helped spur the teleost radiation.

References and Notes

- R. Krumlauf, *Cell* **78**, 191 (1994); M. Kmita-Cunisse, F. Loosli, J. Bierne, W. Gehring, *Proc. Natl. Acad. Sci. U.S.A.* **95**, 3030 (1998); M. Kourakis et al., *Dev. Biol.* **190**, 284 (1997); E. B. Lewis, *Nature* **276**, 565 (1978); S. Dickman, *Science* **275**, 1568 (1997).
- 2. D. Duboule and P. Dollé, EMBO J. 8, 1497 (1989).
- J. Garcia-Fernandez and P. W. H. Holland, Nature 370, 563 (1994); A. Di Gregorio et al., Gene 156, 253 (1995).
- P. W. H. Holland and J. Garcia-Fernandez, *Dev. Biol.* 173, 382 (1996); A. Sharman and P. W. H. Holland, *Neth. J. Zool.* 46, 47 (1996).
- 5. S. Aparicio et al., Nature Genet. 16, 79 (1997).
- B. Misof and G. Wagner, *Mol. Phylogenet. Evol.* 5, 309 (1996).
- F. van der Hoeven, P. Sordino, N. Fraudeau, J. C. Izpisua-Belmonte, D. Duboule, *Mech. Dev.* 54, 9 (1996); B. Misof, M. Blanco, G. Wagner, *J. Exp. Zool.* 274, 193 (1996); V. Prince, L. Joly, M. Ekker, R. Ho, *Development* 125, 407 (1998).
- H. G. Eiken, P. R. Njolstad, A. Molven, A. Fjose, Biochem. Biophys. Res. Commun. 149, 1165 (1987); P. Njolstad, A. Molven, I. Hordvik, J. Apold, A. Fjose, Nucleic Acids Res. 16, 9097 (1988); P. R. Njolstad, A. Molven, H. G. Eiken, A. Fjose, Gene 73, 33 (1989); P. R. Njolstad, A. Molven, J. Apold, A. Fjose, EMBO J. 9, 515 (1990); J. A. Runstadler and T. D. Kocher, Nucleic Acids Res. 19, 5434 (1991); P. Sordino, D. Duboule, T. Kondo, Mech. Dev. 59, 165 (1996); V. Prince, C. Moens, C. Kimmel, R. Ho, Development 125, 393 (1997).
- DNA pools (plate pools, then row and column pools) from an arrayed zebrafish PAC library (19) were screened with redundant primers (Hox-F: 5'-CGNAA-GAARMGNGTNCCNTAYAC-3'; Hox-R: 5'-CATNCKN-CKRTTYTGRAACCANAT-3'; Hox-Fi: 5'-CTNGARYT-NGARAARGARTTYCA), where N is A, C, T, or G, R is A or G, M is A or C, Y is C or T, and K is T or G. Ends

of positive PACs were sequenced and specific primers used to find overlapping clones. Positive PACs were amplified with redundant primers; products were cloned and sequenced, and gene specific primers were used to obtain sequence directly from PAC DNA.

- Unambiguously alignable sequences were obtained using CLUSTAL X (http://www-igbmc.u-strasbg.fr/ BioInfo/ClustalX/Top.html) and trees were generated by the neighbor-joining method [N. Saitou and M. Nei, *Mol. Biol. Evol.* 4, 406 (1987)]. A lamprey (*Petromyzon marinus*) cDNA library screened with redundant *hox* gene primers provided an outgroup. For accession numbers, see (*11*).
- 11. See Science Online (www.sciencemag.org) for a catalog of zebrafish hox genes, alignments for the phylogenetic trees in Fig. 2, accession numbers of loci used to construct the phylogenetic trees, mapping. primers for zebrafish genes, and mapping data for newly mapped loci.
- 12. P. Ahlberg and A. Milner, Nature 368, 507 (1994).
- J. Zhang and M. Nei, *Genetics* **142**, 295 (1996); C. Kappen and F. Ruddle, *Curr. Opin. Genet. Dev.* **3**, 931 (1993).
- W. Bailey, J. Kim, G. Wagner, F. Ruddle, *Mol. Biol. Evol.* **14**, 843 (1997); A. Meyer, *Nature* **391**, 225 (1998).
- 15. P. Cantatore et al., J. Mol. Evol. 39, 589 (1994).
- D. G. Buth, T. Dowling, J. R. Gold, in *Cyprinid Fishes:* Systematics, Biology, and Exploitation, I. J. Winfield and J. S. Nelson, Eds. (Chapman and Hall, London, 1991), pp. 83–126; F. W. Allendorf and G. H. Thorgaard, in *Evolutionary Genetics of Fishes*, J. B. Turner, Ed. (Plenum, New York, 1984), pp. 1–53.
- 17. J. H. Postlethwait *et al.*, *Nature Genet.* **18**, 345 (1998).
- S. D. Ferris and G. S. Whitt, J. Mol. Evol. 12, 267 (1979); A. L. Hughes, Proc. R. Soc. London Ser. B 256, 119 (1994); A. Force et al., in preparation.
- 19. C. Amemiya, unpublished data.
- Supported by NIH grant R01RR10715 (J.H.P.), NIH grant PHS P01HD22486 (J.H.P. and M.W.), a Medical Research Council of Canada grant (M.E.), and NSF grant IBN-9614940 (C.A.). We thank J. Miles for technical assistance.

18 June 1998; accepted 23 October 1998

Regulation of the Proinflammatory Effects of Fas Ligand (CD95L)

Jian-Jun Chen, Yongnian Sun, Gary J. Nabel*

Fas ligand (CD95L) inhibits T cell function in immune-privileged organs such as the eye and testis, yet in most tissues CD95L expression induces potent inflammatory responses. With a stably transfected colon carcinoma cell line, CT26-CD95L, the molecular basis for these divergent responses was defined. When injected subcutaneously, rejection of CT26-CD95L was caused by neutrophils activated by CD95L. CT26-CD95L survived in the intraocular space because of the presence of transforming growth factor- β (TGF- β), which inhibited neutrophil activation. Providing TGF- β to subcutaneous sites protected against tumor rejection. Thus, these cytokines together generate a microenvironment that promotes immunologic tolerance, which may aid in the amelioration of allograft rejection.

The CD95 protein (also called Fas or APO-1) is a cell surface receptor that activates the death signaling pathway in cells. Its physiological ligand, CD95L, can transduce this signal upon cell contact (1). The CD95-

CD95L system has been implicated in the clonal deletion of autoreactive lymphocytes in peripheral lymphoid tissues and in the elimination of autoreactive lymphocyte populations (2), thus contributing to homeostasis