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The NPH7 gene of Arabidopsis thaliana encodes a 120-kilodalton serine-threo- 
nine protein kinase hypothesized t o  function as a photoreceptor for photo- 
tropism. When expressed in insect cells, the NPHl protein is phosphorylated 
in response t o  blue light irradiation. The biochemical and photochemical prop- 
erties of the photosensitive protein reflect those of the native protein in  
microsomal membranes. Recombinant NPHl noncovalently binds flavin mono- 
nucleotide, a likely chromophore for light-dependent autophosphorylation. The 
fluorescence excitation spectrum of the recombinant protein is similar t o  the 
action spectrum for phototropism, consistent with the conclusion that NPHl 
is an autophosphorylating flavoprotein photoreceptor mediating phototropic 
responses in higher plants. 

Plants rely heavily on the surrounding light acterizing the phytochrome family of photo- 
environment to regulate normal growth and receptors that monitor the red and far-red 
development. Over the past two decades, regions of the electromagnetic spectrum (I).  
considerable vroeress has been made in char- However. only recently have advances been 
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made that increase our understanding of ul- 
traviolet-A (UV-A)-blue light perception in 
plants (2). 

Cryptochromes are UV-A-blue light pho- 
toreceptors with homology to microbial DNA 
photolyases (2). Like photolyases, the cryp- 
tochromes contain dual light-harvesting chro- 
mophores-flavin adenine dinucleotide (FAD) 
and either a deazaflavin (3) or a pterin (4)- 
but exhibit no DNA repair activity (4, 5 ) .  The 
two clyptochrome genes of A?-abidopsis, 
CRY1 and CRY2, encode homologous pro- 
teins (3, 6) that appear to overlap in filnction 
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to mediate the blue light regulation of seed- 
ling development (7). CRY2 also plays a 
maior role in floral induction (8). 

> ,  

Arabidopsis mutants deficient in photo- 
tropism, designated nphl (nonphototropic 
hypocotyl I), were previously shown to lack 
the blue light-dependent phosphorylation of 
a 120-kD protein associated with the plasma 
membrane (9). Because mutants at the NPHl 
locus lack all known phototropic responses in 
Arabidopsis, it has been hypothesized that 
NPHl encodes a photoreceptor for phototrop- 
ism (9). The NPHI gene was recently isolated 
and found to encode a serine-threonine pro- 
tein kinase (10). The NH,-terminal region of 
the NPHl protein contains two copies of a 
motif, designated the LOV domain, present in 
a number of proteins from organisms in- 
cluding archaea, eubacteria, and eukaryotes. 
These include NIFL (11) and Aer (12), both 
of which are reported to bind FAD. The LOV 
domain has therefore been proposed to reflect 
a flavin-binding site, regulating kinase activ- 
ity in response to blue light-induced redox 
changes (10). 

To characterize NPHl in the absence of 
other plant proteins, we expressed the 120- 
kD phosphoprotein in insect cells transfected 
with recombinant baculovirus containing the 
NPHI coding sequence (13). Although most 
of the recombinant NPHl expressed (desig- 
nated BacNPHl) was insoluble, a small 
amount of the protein was found to be local- 
ized to the soluble fraction (Fig. 1A). The 
soluble protein produced was recognized by 
specific polyclonal NPHl antisera (Fig. 1B). 
The high specificity of the antibody is dem- 
onstrated by the lack of NPHl protein in 
membrane fractions isolated from the null 
mutant nphl-5 (10). The heterologously pro- 
duced protein is slightly higher in molecular 
weight (125 kD) than the native protein be- 
cause of the presence of additional peptide 
sequences derived from the baculovirus ex- 
pression vector (13). Ultracentrifugation and 
protein immunoblot analysis revealed that 
soluble BacNPHl is not membrane associat- 
ed. In contrast, NPHl is associated with the 
plasma membrane upon isolation from Ara- 
bidopsis and several other plant species (14). 
Thus, although the nature of its association 
with the plant plasma membrane remains to 
be determined, this process does not appear to 
be operative in insect cells. 

Photophysiological, genetic, and bio- 
chemical evidence suggests that NPHl is a 
putative photoreceptor (9, 15) that undergoes 
blue light-dependent autophosphorylation 
(14). We therefore investigated whether NPHl 
expressed in insect cells could be phospho- 
rylated in response to blue light irradiation. 
Insect cells expressing NPHl were grown in 
complete darkness and harvested under dim 
red light. Soluble protein samples were iso- 
lated and used for in vitro phosphorylation 

analysis. Autoradiography revealed that Bac- 
NPHl is highly phosphorylated after a brief 
irradiation with blue light (Fig. 1C). No light- 
activated phosphorylation was detectable in 
soluble fractions prepared from control cells 
expressing biotin carboxylase. These results 
indicate that NPHl is a photosensitive, auto- 
phosphorylating protein kinase. The blue light- 
induced phosphorylation of BacNPHl was 
observed with six independently transfected 
cultures of insect cells. Furthermore, the rel- 
ative increase in phosphorylation induced by 
blue light is comparable to that observed in 
membrane fractions isolated from etiolated 
Arabidopsis seedlings (Fig. 1C). Remark- 
ably, both the fluence-response requirements 
and the phosphorylation kinetics of Bac- 
NPHl strongly resemble those of the native 
protein in microsomal membranes (Fig. 2, A 
and B). In contrast, after a saturating light 
pulse, recovery of light sensitivity in dark- 

ness for native NPHl is more rapid than that 
observed for the recombinant protein (Fig. 
2C). Dark attenuation of the in vitro blue 
light-mediated phosphorylation has also been 
reported for pea (16), maize (1 7), and oat 
(18) and is believed to restore the light-sen- 
sitive phosphorylation system to its initial 
ground state. An explanation for the observed 
difference could be that some Arabidopsis 
protein or factor involved in desensitizing 
NPHl activation in the absence of light is 
simply lacking from insect cells. 

The above results support the earlier hy- 
pothesis (9) that NPHl is a photoreceptor 
mediating blue light-dependent autophospho- 
rylation. We therefore investigated whether 
BacNPHl binds a cofactor that could func- 
tion as a light-harvesting chromophore. Sev- 
eral chromophore moieties have been pro- 
posed for blue light photoreceptors, including 
carotene (19), flavins (20), pterins (21), reti- 

Fig. 1. (A) Expression of NPHl in insect cells. A A 
Coomassie blue-stained SDS-polyacrylamide 
gel (12.5%) is shown for the total protein of 
insect cells expressing NPHI (BacNPHl) or bi- 
otin carboxylase (control). Also shown are the 
proteins of pelleted (insoluble) and soluble 
fractions isolated from insect cells expressing 
NPHI. Cells were lysed by sonication and sep- 
arated into pelleted and soluble fractions by 
centrifugation at 16,000g for 10 min. Molecular i e  
weight markers (MW) are shown on the left. 
(B) lmmunoblot analysis of NPHl  protein. C 
Growth of Columbia wild-type (WT) and 
nph7-5 mutant seedlings ani'preparation of D L D L D L D L 
microsomal membranes were as described (91. mm 
Membrane protein (20 kg) and soluble prot'ei;l 120 
(5 kg) prepared from insect cells expressing 
NPHl (BacNPH1) were resolved on an SDS- 
poLyac&lamide ;el (7.5%), and the immuno- 
blot was probed with anti-NPH1 (30). (C) Autoradiogram showing the blue light-dependent 
phosphorylation of BacNPHl. Membrane preparations from etiolated wild-type (WT) or nph7-5 
mutant seedlings and soluble protein extracts isolated from insect cells expressing NPHl (Bac- 
NPHI) or biotin carboxylase (control) were used for in vitro phosphorylation analysis, as described 
(9). ALI manipulations were carried out under dim red light. Samples were given a mock irradiation 
(D) or irradiated with blue Light (L) at a total fluence of 3300 kmol m-'. 

1 2 3 4 0  10 20 30 4 0 0  10 20 30 40 

Log fluence (pmol mm2) Time (minutes) Time (minutes) 

Fig. 2. (A) Fluence response of NPHl phosphorylation in wild-type membranes (0) and soluble 
protein extracts prepared from insect cells expressing NPHl (W). (B) Kinetics of NPHl phospho- 
rylation in wild-type membranes (0) and soluble protein extracts prepared from insect cells 
expressing NPHl (W). (C) Effect of dark incubation on NPHl phosphorylation in wild- pe 
membranes (0) and soluble protein extracts prepared from insect cells expressing NPHI YW). 
Samples were irradiated and incubated on ice for the times indicated before the addition of 
radiolabeled adenosine triphosphate. In each case, all values are relative to dark controls and 
represent the average of three independent experiments. Standard errors are shown. The extent of 
phosphorylation was quantified with a Phosphorlmager (Molecular Dynamics). 
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nal (22), and zeaxanthin (23). Because the 
insoluble form of BacNPHl represents the 
majority of extractable protein from insect 
cells (Fig. lA), this fraction was initially used 
for the analysis of potential chromophores. 
The cofactor was found to be noncovalently 
bound, as it was released by heat or acid 
denaturation of BacNPHl. Spectral analysis 
of the released chromophore revealed the pig- 
ment to be fluorescent, with excitation and 
emission maxima resembling those of free 
flavins (Fig. 3; A and B). Furthermore, the 
absorption spectrum of the free chromophore 
exhibited the two prominent absorbance peaks 
characteristic of flavins (Fig. 3C). These 

300 350 400 450 500 550 600 650 

Wavelength (nm) 

Fig. 3. (A t o  C) The D 
fluorescence excita- 
t i on  spectrum (A), Flavin Rf 

fluorescence emis- BacNPHIC 0.31 
sion spedrum (B), and Riboflavin 0.63 
absorption spectrum FMN 0.31 
(C) o f  the chromo- FAD 0.18 
phore released f rom 
insoluble protein ex- 
tracts prepared f rom insect cells expressing 
N P H l  (solid lines). In each case, an equal 
amount of protein extract f rom insect cells 
expressing biot in carboxylase (dotted line) was 
used as a control (31). (D) Identification o f  the 
chromophore bound t o  BacNPHl as FMN. The 
chromophore bound t o  BacNPHl was released 
by boiling the pelleted fraction (1 mg) in  70% 
ethanol and used for thin-layer chromatogra- 
phy as described (32) using n-butanol-acetic 
acid-water ( 3 : l : l  v lv)  as solvent. Retardation 
factor (Ri )  values for the BacNPHl chro- 
mophore (BacNPHIC) and other flavins are 
shown. 

spectral characteristics were also detectable 
in soluble protein extracts prepared from in- 
sect cells expressing BacNPHl but were min- 
imal in extracts from control cells expressing 
biotin carboxylase (Fig. 3, A to C). (A back- 
ground level of flavin fluorescence was rou- 
tinely observed in soluble fractions isolated 
from the control cells, likely from flavins re- 
leased from endogenous flavoproteins present.) 
The flavin associated with BacNPHl was 
identified as flavin mononucleotide (FMN) 
by thin-layer chromatography, according to 
its mobility relative to FAD, FMN, and ribo- 
flavin standards (Fig. 3D). These obsewa- 
tions confirm previous biochemical evidence 
suggesting that the photodetection mecha- 
nism for the blue light-dependent phospho- 
rylation reaction requires a flavin species 
(24). 

Phototropism is induced by green light in 
addition to UV-A-blue light in Arabidopsis 
(9, 25). It will be interesting to establish 
whether the redox properties of the FMN 
bound to NPHl lead to a stable semiquinone, 
thereby generating additional sensitivity in 
the green region of the spectrum, as was 
found for the FAD chromophore bound to 
CRYl (5). Given that the fluence-response 
requirements and phosphorylation kinetics 
for B ~ ~ N P H ' ~  correspond to those of the na- 
tive protein in microsomal membranes (Fig. 
2, A and B), it seems most likely that FMN is 
also the chromophore that mediates the pho- 
toactivation of NPHl in vivo. 

Action spectra for a number of processes 
initiated by UV-A-blue light, including pho- 

300 350 400 450 500 

Wavelength (nm) 

Fig. 4. (A) Fluorescence excitation spectra o f  
insoluble protein extracts prepared f rom insect 
cells expressing N P H l  (solid line) and biot in 
carboxylase (dotted line). (B) The corrected 
fluorescence excitation spectrum (solid line) for 
BacNPHl [the difference between the fluores- 
cence spectra shown in (A)] plotted w i th  the 
action spectrum for the ascending arm of alfal- 
fa hypocotyl phototropism [dashed line; re- 
drawn f rom (33)]. 

totropism, have been described (26) and are 
reported to resemble the absorption spectnun 
of a flavoprotein. The action spectnun for 
phototropism shows maximal activity be- 
tween 400 and 500 nm and reveals a degree 
of fine structure with a major band at 450 nm 
and subsidiary shoulders at 430 and 470 nm 
(dashed line, Fig. 4B). An additional broad; 
less effective peak is typically observed at 
380 nm. We therefore examined whether a 
similar degree of fine structure could be de- 
tected for the illsoluble form of BacNPHl. 
Indeed, the uncorrected fluorescence excita- 
tion spectrum for BacNPHl displays the 
characteristic fine structure observed in the 
action spectrum for phototropism (Fig. 4A). 
Such fluorescent peaks were also clearly vis- 
ible in soluble protein extracts prepared from 
insect cells expressing NPHl, but they were 
undetectable in extracts from cells expressing 
biotin carboxylase (Fig. 4A). Subtraction of 
the background fluorescence observed in the 
control gave a corrected fluorescence excita- 
tion spectrum for BacNPHl that resembles 
the action spectrum for phototropism (Fig. 
4B). The turbid nature of the sample used for 
this analysis would be expected to reduce 
fluorescence in the UV-A region of the spec- 
trum and to account for the less prominent 
peak at 380 nm. These findings are also 
consistent with the hypothesis that NPHl en- 
codes the apoprotein of a blue light photore- 
ceptor for phototropism. 

Recent genetic evidence has implicated an 
involvement of cryptochrome in phototro- 
pism (27). An Avabidopsis mutant lacking 
CRYl and functional CRY2 displayed an 
apparent lack of first-positive phototropic 
curvature in response to blue light irradiation. 
However, crylciy2 double mutants retained a 
significant degree of second-positive curva- 
ture, indicating the presence of an indepen- 
dent photoreception system for phototrop- 
ism. Null mutants lacking CRYl and CRY2 
protein exhibited first-positive blue light- 
induced phototropic curvature (28), suggest- 
ing that CRY l and CRY2 are not the primary 
photoreceptors mediating phototropic curva- 
ture in Arabidopsis. The crylcrj'2 double mu- 
tants also retained normal in vitro blue light- 
dependent phosphorylation of NPHl (28). 
Thus, light-induced phosphorylation of NPHl 
does not appear to result from the action of 
cryptochrome. Instead, it is possible that 
cryptochrome, like phytochrome ( 2 9 ,  func- 
tions to modulate the response output, lead- 
ing to enhanced first- and second-positive 
phototropic cunlatures. A more detailed pho- 
tophysiological characterization of photo- 
tropic responses in clyptochrome- and phy- 
tochrome-deficient mutants will aid our un- 
derstanding of the phototropic detection sys- 
tem, which appears to involve the interaction 
of both red-far-red and other blue light pho- 
toreceptors. The present results, in conjunc- 
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tion nit11 the established role of S P H l  in 
phototropism (9 .  1 0 ) .  lead us to propose that 
SPH1  is an autopl~ospl~olylatillg f la~opro-  
rein. unrelated to crq-ptochrome. that serx.es as 
a photorcccptor for phototropism in higher 
plants. 
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Purification and CLoning of a 
Protein Kinase That 

Phosphorylates and Activates 
the Polo-Like Kinase PLxl 
Yue-Wei Qian, Eleanor Erikson, James b. Maller* 

The Xenopus polo-like kinase 1 (Plxl) is essential during mitosis for the acti- 
vation of Cdc25C, for spindle assembly, and for cyclin B degradation. Polo-like 
kinases from various organisms are activated by phosphorylation by an un- 
identified protein kinase. A protein kinase, polo-like kinase kinase 1 or xPlkkl, 
that phosphorylates and activates Plxl in vitro was purified t o  near homoge- 
neity and cloned. Phosphopeptide mapping of Plxl phosphorylated in vitro by 
recombinant xPlkkl or in progesterone-treated oocytes indicates that xPlkkl 
may activate Plxl in vivo. The xPlkkl protein itself was also activated by 
phosphorylation on serine and threonine residues, and the kinetics of activation 
of xPlkkl in vivo closely paralleled the activation of Plxl. Moreover, microin- 
jection of xPlkkl into Xenopus oocytes accelerated the timing of activation of 
Plxl and the transition from C, t o  M phase of the cell cycle. These results define 
a protein kinase cascade that regulates several events of mitosis. 

Progression through the eul<aryotic cell cycle 
relies on the periodic acti~.ation or inactiva- 
tion of I arious cyclin-dependent protein lii- 
llases (Cdks) ( I ) .  Cell cycle checkpoints 
monitor the fidelity of events ill a given cell 
cycle phase and control a signaling system 
that call delay cell cycle progressio~l and 
changes in Cdl< ac t i~ i ty .  One checkpoint 
blocl<s actix,ation of the Cdc2Zcycli11 B com- 
plex in G2 phase if DNA replication IS in- 
co~llplete. This block to activation is mainly 
accomplished by maintenance of the phos- 
pho~ylated state of Thrl' and Tyrl' in Cdc2 

( 2 ) .  These considerations have focused atten- 
t ~ o n  OII the pathway of activation of the phos- 
phatase Cdc25C. which initiates mitotic entry 
by dephosphorylat~ng Thr'' and Tyrl' in 
Cdc2 (3). Overcxpression of Cdc25C either 
in viva (4 )  or in vitro (5 ,  6) overcomes the 
replicati011 checkpoint. Cdc25C is activated 
at the G,-M tra~lsition by serine-threoni~le 
phosphorylation (6, 7). The Cdc2-cyclin B 
complex call phosphorylate and activate 
Cdc25C ( S ) ,  formi~lg a positive feedback 
loop, but in Xei~opi~s  initial phosp1~or~;lation 
and activation of Cdc25C results fro111 acti- 
vation of the polo-like liinase Plxl ( 9 .  1 0 ) .  

Howard Hughes Medical institute and Department of 
Plxl can phosphorylate Cdc25C in vitro at 

pharmacoloev, universitv of colorado ~ ~ h ~ ~ l  of pled- activating sites (9) ,  and in viva activation of 
icine, D e n v e r  Colorado 80262 ,  USA. Plxl coillcides with the activation of Cdc25C 

qo whom correspondence should be addressed, E. ( 1 0 ) .  Moreover, inhibition of Plxl delays the 
mail: mallerj@essex.uchsc.edu activatioa of Cdc25C. and micro~r~jection of 
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