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(HadCM2) [S. F. B. Tett, T. C. Johns, J. F. B. Mitchell, Clim. 
Dyn. 13, 303 (1997)]. For the control-run results we 
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and re-computed the correlations. The results were 
similar to the full-coverage results. Standard errors as­
sociated with the sample autocorrelations are typically 
of the order 0.05 or smaller in the case of the model 
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ymptotic formulae for the variance of sample autocor­
relations [for example, see. p. 342 of W. A. Fuller, 
Introduction to Statistical Time Series, (Wiley-lnter-
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data. The result that the standard errors are larger for 
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external forcing) is the equilibrium global-mean 
warming per unit radiative forcing, commonly ex­
pressed as the global-mean warming for a doubling 
of the C0 2 concentration, A72x. The most likely range 
for A72x is 1.5-4.5°C [J. F. B. Mitchell et ai, in 
Climate Change. The IPCC Scientific Assessment, J. T. 
Houghton, G. J. Jenkins, J. J. Ephraums, Eds. (Cam­
bridge Univ. Press, Cambridge, 1990), pp. 131-172] 
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The concept may be applied to any forcing. For 
example, the equilibrium global-mean warming for a 
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Mirrors, probably the most prevalent of 
optical devices, are used for imaging and 
solar energy collection and in laser cavities. 
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mirrors, the age-old metallic and the more 
recent dielectric. Metallic mirrors reflect 
light over a broad range of frequencies 
incident from arbitrary angles (that is, om­
nidirectional reflectance). However, at in­
frared and optical frequencies, a few per­
cent of the incident power is typically lost 
because of absorption. Multilayer dielectric 
mirrors are used primarily to reflect a nar­
row range of frequencies incident from a 
particular angle or particular angular range. 
Unlike their metallic counterparts, dielec­
tric reflectors can be extremely low loss. 
The ability to reflect light of arbitrary angle 
of incidence for all-dielectric structures has 
been associated with the existence of a 
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A design criterion that permits truly omnidirectional reflectivity for all polar­
izations of incident light over a wide selectable range of frequencies was used 
in fabricating an all-dielectric omnidirectional reflector consisting of multilayer 
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waveguide, whereas a planar film could be used as an efficient radiative heat 
barrier or collector in thermoelectric devices. 
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complete photonic band gap (1-3), which 
can exist only in a system with a dielectric 
function that is periodic along three orthog- 
onal directions. In fact, a recent theoretical 
analysis predicted that a sufficient condi- 
tion for the achievement of omnidirectional 
reflection in a periodic system with an in- 
terface is the existence of an overlapping 

band gap regime in phase space above the 
light cone of the ambient media (4). Now 
we extend the theoretical analysis and pro- 
vide experimental realization of a multi- 
layer omnidirectional reflector operable in 
infrared frequencies. The structure is made 
of thin layers of materials with different 
dielectric constants (polystyrene and tellu- 

Fig. 1. Schematic of the multi- hl h, 
layer system showing the layer 
parameters (ne and he are the 
index of refraction and thickness 
of layer a, respectively), the in- 
cident wave vector k, and the 
electromagnetic mode conven- 
tion. E and B are the electric and 
magnetic fields, respectively. 
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rium) and combines characteristic features 
of both the metallic and dielectric mirrors. 
It offers metallic-like omnidirectional re- 
flectivity together with frequency selectiv- 
ity and low-loss behavior typical of multi- 
layer dielectrics. 

We consider a system that is made of an 
array of alternating dielectric layers cou- 
pled to a homogeneous medium, character- 
ized by no (such as air with no = l ) ,  at the 
interface. Electromagnetic waves are inci- 
dent upon the multilayer film from the 
homogeneous medium. Although such a 
system has been analyzed extensively in the 
literature (5-7), the possibility of omnidi- 
rectional reflectivity was not recognized 
until recently. The generic system is de- 
scribed by the index of refraction profile in 
Fig. 1 ,  where h ,  and h,  are the layer thick- 
ness and n ,  and n, are the indices of refrac- 
tion of the respective layers. The incident 
wave has a wave vector k = kx< + kV&> and 
a frequency of w = clklln,, where c is the 
speed of light in vacuum and i., and d l  are 
unit vectors in the x and J. directions, re- 
spectively. The wave vector together with 
the normal to the periodic structure defines 
a mirror plane of symmetry that allows us 
to distinguish between two independent 
electromagnetic modes: transverse electric 
(TE) modes and transverse magnetic (TM) 
modes. For the TE mode, the electric field 
is perpendicular to the plane, as is the 
magnetic field for the TM mode. The dis- 
tribution of the electric field of the TE 
mode (or the magnetic field in the TM 
mode) in a particular layer within the strat- 
ified structure can be written as a sum of 
two plane waves traveling in opposite di- 
rections. The amplitudes of the two plane 
waves in a particular layer a of one cell are 
related to the amplitudes in the same layer 
of an adjacent cell by a unitary 2 x 2 
translation matrix CT") (7 ) .  

General features of the transport prop- 
erties of the finite structure can be under- 
stood when the properties of the infinite 
structure are elucidated. In a structure with 
an infinite number of layers, translational 
symmetry along the direction perpendicular 
to the layers leads to Bloch wave solutions 
of the form 

E,(s,y) = E,(.u)e"'e'"' (1) 

where E, (.u, y)  is a field component, E,(x) is 
periodic, with a period of length a ,  and K is 
the Bloch wave number given by 

Fig. 2. (A) Projected band structure of a multilayer film with the light line and Brewster line, K = - In - Tr(L""') 
exhibiting a reflectivity range of limited angular acceptance with no = 1, n ,  = 2.2 and n, = 1.7 a 2  
and a thickness ratio of h,lh, = 2.211.7. (B) Projected band structure of a multilayer film together 
with the light line and Brewster line, showing an omnidirectional reflectance range at the first and 

i1 
second harmonic. Propagating states, light gray; evanescent states, white; and omnidirectional 3 ( ~ [ T r ( ~ 1 ' ) ] 2 - i ] ' 2 )  (2 )  
reflectance range, dark gray. The film parameters are n, = 4.6 and n, = 1.6 with a thickness ratio 
of h,lh, = 1.610.8. These parameters are similar to the actual polystyrene-tellurium film Solutions of the infinite system can be 
parameters measured in the experiment. propagating or evanescent, corresponding 
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to real or imaginary Bloch wave numbers, 
respectively. The solution of Eq. 2 defines 
the band structure for the infinite system, 
w(K,k,). It is convenient to display the so- 
lutions of the infinite structure by project- 
ing the w(K?k,>) function onto the w-k, 
plane; Examples of such projected struc- 
tures are shown in Fig. 2, A and B. The 
light gray areas highlight phase space 
where K is strictly real, that is, regions of 
propagating states, whereas the white areas 
represent regions containing evanescent 
states. The shape of the projected band 
structures for the multilayer film can be 
understood intuitively. At lc,. = 0; the band 
gap for waves traveling normal to the lay- 
ers is recovered. For k, > 0; the bands 
curve upward in frequency. As ky + =; the 
modes become largely confined to the slabs 
with the high index of refraction and do not 
couple between layers (and are therefore 
independent of ky). 

For a finite structure, the translational 
symmetry in the directions parallel to the 
layers is preserved; hence, k, remains a 
conserved quantity. In the direction perpen- 
dicular to the layers, the translational sym- 
metry no longer exists. Nevertheless, the K 
number, as defined in Eq. 2; is still rele- 
vant; because it is determined purely by the 
dielectric and structural property of a single 
bilayer. In regions where K is imaginary, 
the electromagnetic field is strongly atten- 
uated. As the number of layers is increased, 
the trallsmission coefficient decreases ex- 
ponentially, whereas the reflectivity ap- 
proaches unity. 

Because we are primarily interested in 
waves originating from the homogeneous 
medium external to the periodic structure, 
we will focus only on the portion of phase 
space lying above the light line. Waves 
originating from the homogeneous medium 
satisfy the condition w 2 ck,lizo, where no is 
the refractive index of the l~omogeneous 
medium, and therefore they must reside 
above the light line. States of the homoge- 
neous medium with k, = 0 are normal 
incident, and those lying on the w = ck,:iz, 
line with = 0 are incident at an angle of 
90". 

The states in Fig. 2A that are lying in 
the restricted phase space defined by the 
light line and that have a (w, lc,.) corre- 
sponding to the propagating solutions (gray 
areas) of the crystal can propagate in both 
the homogeneous medium and the struc- 
ture. These waves will partially or en- 
tirely transmit through the film. Those 
states with (w; k,) in the evanescent regions 
(white areas) can propagate in the homoge- 
neous medium but will decay in the crys- 
tal-waves corresponding to this portion 
of phase space will be reflected off the 
structure. 

The inultilayer system leading to Fig. 
2A represents a structure with a limited 
reflectivity cone because for any frequency 
one can always find a k,> vector for which a 
wave at that frequency can propagate in the 
crystal and hence transmit through the film. 
For example; a wave with w = 0.285 X 

2m!a (dashed horizoiltal line in Fig. 2A) 
will be reflected for a range of li, values 
ranging from 0 (normal incidence) to 
0.285 X 2 ~ l n  (90" incidence) in the TE 
mode; whereas in the TM mode it begins to 
transmit at a value of k,, = 0.187 X 2r!n 
(-41" incidence). The ll'ecessary and suffi- 
cient criterion ( 8 )  for omnidirectional re- 
flectivity at a given frequency is that no 
transmitting state of the structure exists 
inside the light cone; this criterion is satis- 
fied by frequency ranges marked in dark 
gray in Fig. 2B. In fact; the system leading 
to Fig. 2B exhibits two o~nnidirectional 
reflectivity ranges. 

The omnidirectional range is defined 
from above by the normal incidence band 
edge w,,(kT = ~ i a ,  lc, = 0) (point a in Fig. 
2B) and from below by the intersection of 
the top of the TM allowed band edge with 
the light line w,(ky = ~ i a ,  lev = w,:'c) (point 
b in Fig. 2B). 

The exact expression for the band edges is 

where lc,'") = \i(wiza c)' - k: (a  = 1, 2) 
and 

A dimensionless parameter used to quantify the 
extent of the o~nnidirectional range is the range 
to midrange ratio defined as (w, - w,):%(w, + 
w,). Figure 3 is a plot of this ratio as a function of 
n2!n1 and n,!n,; where w,, and w, are determined 
by solutions of Eq. 3 with quarter wave layer 
thickness. The contours in this figure represent 
various eq~~ionx~idirectional ranges for different 
material index parameters and could be usefill for 
design puiyoses. 

It inay also be useful to have an approxi- 
mate analytical expression for the extent of 
the gap. This can be obtained by setting 
cos(k.,'l)h, - kY(')h,)  = 1 inEq. 3. U'e find 
that for a given incident angle 8,; the approx- 
imate width in frequency is 

At nonnal incidence; there is no distinction 
between TM and TE modes. At increasingly 
oblique angles, the gap of the TE mode in- 
creases, whereas the gap of the TM mode 
decreases. In addition, the center of the gap 
shifts to higher frequencies. Therefore, the 

50 normal 

ndn, I 

Fig. 3. ( le f t )  The range t o  rn~drange rat lo (w, 
- w , ) / l / 2 ( w h  + w,), for the fundamental 

50 $ i  , 80" TM 
frequency range o f  ornn~dlrectional reflection, 
plotted as contours. Here, the layers were set 100c 0 6 9 12 15 
t o  quarter wave th~ckness and n, > n, The 
rat lo for our mater~als is about 45% (n,ln, = Wavelength (pm) 
2 8 7 5  and n,ln, = 1 6) I t  IS located a t  the 
~n te rsec t~on  o f  the dashed l ~ n e s  (black dot) Fig. 4 (r ight) Calculated (sol~d l ~ n e )  and measured 
(dashed l ~ n e )  reflectance (In percent) as a func t~on  of wavelength for TM and TE modes a t  normal, 
45", and 80" angles of incidence, s h o w ~ n g  an omn id~rec t~ona l  reflectivity band 
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crlterloil for the existence of omnidirectional 
reflectivity can be restated as the occurrence 
of a frequency overlap between the gap at 
normal incidence and the gap of the TM 
mode at 90". Analytical expressions for the 
range to midrange ratio can be obtained by 
setting 

Moreover. the maximum range width is at- 
tained for thickness values that are not equal 
to the quarter wave stack although the in- 
crease in band width gained by dev~ating 
from the quarter wave stack is typically only 
a few percent (4). 

In general, the TM mode defines the low- 
er frequency edge of the omnidirectional 
range. An example can be seen in Fig. 2B for 
a particular choice of the indices of refrac- 
tion. This call be proven by showing that 

in the region that resides inside the light 
line. The physical reason for Eq. 7 lies 111 

the vectorial nature of the electric field. In 
the upper portion of the first band. the 
electric field concentrates its energy in the 
high dielectric regions. Away from normal 
incidence, the electric field in the TM mode 
has a component in the direction of period- 
icity, and this component forces a larger 
portion of the electric field into the low 
dielectric regions. The group velocity of 
the TM mode is therefore enhanced. In 
contrast, the electric field of the TE mode 
is always perpendicular to the direction of 
periodicity and call concentrate its energy 
primarily in the high dielectric region. 

A polystyrene-tellurium (PS-Te) materi- 
als system was chosen to demonstrate omni- 
directional reflectivity. Tellurium has a high 
index of refraction and 10% loss characteris- 
tics in the frequency range of interest In 
addltlon. ~ t s  relatn ely low latent heat of con- 
densat~on together with the high glass transi- 

tion temperature of the PS minimizes diffu- 
sion of Te into the polymer layer. The choice 
of PS, which has a series of absoiytioll peaks 
in the measurement range (9); demollstrates 
the competition between reflectivity and ab- 
soiytioll that occurs when an absorption peak 
is located in the evanescent state region. The 
Te (0.8 p,m) and PS (1.65 pm) films were 
deposited (10) sequentially to create a nine- 
layer film ( I  I). 

The optical response of this particular mul- 
tilayer film was designed to have a high reflec- 
tivity region in the 10- to 15-pm range for any 
angle of incidence (in the experiment, we mea- 
sure from 0" to 80'). The optical response at 
oblique a~~gles  of incidence was measured with 
a Fourier Transfonn Infrared Spectrometer 
(Nicolet 860) fitted with a polarizes (ZnS; Spec- 
traTech) and an angular reflectivity stage 
(VeeMax; SpectraTech). At normal incidence, 
the reflectivity was measured with a Nicolet 
Infrared Microscope. A freshly evaporated alu- 
minum inill-or was used as a background for the 
reflectance measurements. 

Good agreement between the calculated 
(12) and measured reflectance spectra at 
normal, 45"; and 80" incidence for the TM 
and TE modes is shown in Fig. 4. The 
regimes of high reflectivity at the different 
angles of incidence overlap, thus forming a 
reflective range of frequencies for light of 
any angle of incidence. The frequency lo- 
cation of the omnidirectional range is de- 
termined by the layer thickness and can be 
tuned to meet specifications. The range is 
calculated from Eq. 6 to be 5.6 pm, and the 
center wavelength is 12.4 p,m; correspond- 
ing to a 45% range to midrange ratio shown 
in dashed lines in Fig. 3 for the experiinen- 
tal index of refraction parameters. These 
values are in agreement with the measured 
data. The calculatioils are for lossless ine- 
dia and therefore do not predict the PS 
absorption band at - 13 and 14 p,m. The PS 
absorption peak is seen to increase at larger 
angles of incidence for the TM mode and to 
decrease for the TE mode. The physical 
basis for these phenorneila lies in the rela- 
tion between the penetration depth and the 
amount of abso~ption. The penekatio~~ depth is 
5 Im(l!K), where K is the Bloch Tvave num- 
ber. It can be shown that E, is a monotonically 
increasing hnction of the incident angle for the 
TM mode of an omnidirectional reflector and is 
relatively constant for the TE mode. Thus, the 
TM mode penetrates deeper into the structure at 

The PS-Te structure does not have a com- 
plete photonic band gap. Its omllidirectional 
reflectivity is due instead to the restricted 
phase space available to the propagating 
states of the system. The materials and pro- 
cesses were chosen for their low cost and 
applicability to large area coverage. The pos- 
sibility of achieving omnidirectiollal reflec- 
tivity itself is not associated with any partic- 
ular choice of materials and can be applied to 
many wavelengths of interest. Our structure 
offers metallic-like omnidirectional reflectiv- 
ity for a wide range of frequencies and at the 
same time is of low loss. 111 addition, it allows 
the flexibility of frequency selection. 
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