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says that a vaccine based on the artificial
cones, which resemble actual viral struc-
tures, might be more successful. At the
very least, the new work opens up these
kinds of possibilities. Says Trono: “Any
single event in HIV life cycle is a valid
target for therapy.”

Like most sci-
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found, and discovered that they, too, har-
bored large numbers of unactivated but
virus-producing T lymphocytes.

The macaque results, in particular, show
that “T Iymphocytes and not macrophages
or dendritic cells are the main targets at the
very beginning of infection,” says patholo-
gist Paul Racz of the Bernhard Nocht Insti-
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dogmas. One of
these concerns the kinds of im-
mune cells in which HIV can
replicate. Researchers have long
assumed that T lymphocytes—the
virus’s primary target—must be
in an active state to produce
progeny HIV; that is, they must be
immunologically stimulated to di-
vide and proliferate. But because
T cells are not activated against
HIV in the earliest stages of the
infection, many researchers have
suggested that other immune cells, such as
macrophages or dendritic cells—which can
be infected and produce virus even when they
are not dividing—are the main producers of
HIV early on. T lymphocytes, according to
this widely held view, become primary targets
only after the immune system has begun try-
ing to beat the virus down.

But in one of the most debated talks in
Lausanne, retrovirologist Ashley Haase of
the University of Minnesota Medical School
in Minneapolis presented evidence that
T lymphocytes may in fact be the most im-
portant target of early infection. Even more
surprising, Haase reported that unactivated
T lymphocytes can produce virus, a finding
that flies in the face of much current wis-
dom. If correct, these new results might
have important implications for how HIV
gains a foothold in infected people, as well
as for therapeutic strategies.

Haase and his co-workers, including re-
search associate Zhi-Qiang Zhang, inoculat-
ed rhesus macaques with a strain of SIV, the
simian version of HIV, that is capable of in-
fecting both T lymphocytes and macro-
phages, and then analyzed a wide variety of
tissues to see which cells were producing
virus. Using molecular probes for SIV
RNA, the team found that T lymphocytes
made up almost all of the virus-producing
cells, even in the earliest days after infec-
tion. Moreover, most of these infected cells
did not show signs of activation or cell divi-
sion, usually signaled by the appearance of
cell surface proteins such as HLA-DR,
Ki67, and CyclinA. Haase and his co-
workers then went back and looked at lym-
phoid tissue from HIV-positive patients,
where most T lymphocytes in the body are
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All is not calm. Quiescent T lymphocytes may be targets
for HIV in early infection.

tute for Tropical Medicine in Hamburg,
Germany. Haase told the meeting that these
quiescent cells, which produce progeny HIV
at a low rate and may be more resistant to
anti-HIV therapies than activated cells,
could be key vectors for spreading the virus
to other unactivated lymphocytes during
transmission of HIV and early infection.
Moreover, these cells seem to differ from
previously identified “reservoirs” of HIV
infection: T lymphocytes that harbor latent
viral DNA in their chromosomes but pro-

duce no virus until activated (Science, 14
November 1997, p. 1227).

If so, some researchers say, current ex-
perimental attempts to “burn out” the latent-
ly infected reservoir cells by activating them
so they will be destroyed when virus proge-
ny burst out could backfire, because the
virus might infect new populations of drug-
resistant quiescent cells. “This may be
telling us that instead of activating, we
should be trying to shut down residual rephi-
cation in these cells,” says immunologist
Giuseppe Pantaleo of the Vaudois Hospital
Center in Lausanne.

As intriguing as these findings are, many
researchers are treating them with caution.
Brigitte Autran, an immunologist at the
Pitié-Salpétriere Hospital in Paris, told
Science she was not yet convinced that
Haase’s HIV-producing cells are fully quies-
cent. Autran says that some of the markers
Haase used to determine their activation
state, such as the appearance of HLA-DR,
can lag many hours behind activation. Simi-
lar concerns are expressed by molecular vi-
rologist Didier Trono at the University of
Geneva, who says that T lymphocytes may
not fall into simple categories of “quies-
cent” and “activated” but that there might be
a gradient between these two states.

Although Haase’s results need further
confirmation, AIDS researchers will be
following this story very closely. “This is
really a major concern,” says Pantaleo, es-
pecially if “these [quiescent] cells are the
ones that are not responding very well to
antiviral therapy.” —MICHAEL BALTER

MATHEMATICS

From Solitaire, a Clue to the
World of Prime Numbers

The strange sort of randomness seen in a simple version of solitaire may
hold a key to proving a hypothesis about how primes are distributed

“I am convinced that God does not play
dice,” wrote Albert Einstein in a 1926 letter
to physicist Max Born. With this now-
famous quote, Einstein expressed his reser-
vations about the emerging theory of quan-
tum mechanics, which has randomness at its
very core. But recent mathematical results
might suggest that Einstein simply forgot to
finish his sentence: “God does not play
dice—He plays solitaire.”

Solitaire is a subtler game than dice. Al-
though the probability of winning at various
dice games can be computed easily, no one
knows the theoretical odds of winning at
solitaire. “One of the embarrassments of our
field,” says Persi Diaconis, a probabilist at

Stanford University, “is the fact that we can-
not analyze the common game of solitaire.”
But a simpler version of solitaire has now
been cracked, Diaconis announced at an Oc-
tober workshop on mathematics and the me-
dia at the Mathematical Sciences Research
Institute in Berkeley, California. In work
that is still being refereed, Percy Deift, a
mathematician at New York University,
along with Jinho Baik of New York Univer-
sity and Kurt Johansson of the Royal Insti-
tute of Technology in Stockholm, has
proved that a deep similarity exists between
a simple form of solitaire and a mathemati-
cal tool called random matrices, originally
developed to understand the quantum be-
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havior of large atoms.

The implications could go well beyond
card games to some of the most puzzling
patterns in mathematics. Other recent work
suggests that the same random matrix key
might unlock the most important problem in
number theory: proving the Riemann hy-
pothesis, which describes how prime num-
bers are distributed among other integers.

In the solitaire game that Deift and col-
leagues solved, the deck is shuffled and the
player turns over the cards one at a time,
placing each one on top of any higher rank-
ing card that is already exposed. Sometimes
there is only one possibility; sometimes the
player has to choose among several piles. If
no higher card is showing, he places the
card in a new pile. The object of the game is
to make as few piles as possible, and the
group tackled the puzzle of just how many
piles a perfect player can expect to make—a
number that will depend only on the random
order of the cards in the deck.

Mathematicians answer this sort of ques-
tion with a probability distribution—a func-
tion that represents the likelihood of each
possible outcome. In dice, the frequency
with which you will get particular sums of
spots in a large number of rolls forms a
Gaussian distribution, or bell curve. But
Deift has proved that solitaire is not
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ly revolutionary thought,” says Deift. “It
says there is no mechanism—or that the
mechanism is irrelevant. The only thing that
matters is the symmetry of the matrices and
the probability distribution.”

Random matrices, naturally enough, have
random eigenvalues. But theirs is a very pe-
culiar sort of randomness: The eigenvalues
seem to push each other away, as if they were
electrically charged atoms in a long tube.
Thus they end up spaced at fairly regular
intervals on a number line, in a curious lim-
bo between complete regularity and com-
plete randomness. Deift and colleagues
have confirmed that the same kind of ran-
domness governs the number of piles in the
solitaire game.

y that solve the equation {(x + y \-1) = 0.
Riemann believed, but couldn’t prove, that
in every solution, x (which controls the size
of the fluctuations) equals %.

Investigators have used computers to
crank out millions of solutions, and so far all
of them have queued up on the critical line
x = . But no one has been able to prove
that all the unknown ones fall on that line as
well, which would make it possible to pre-
dict the full distribution of primes. “The Rie-
mann ( function is a leftover from the last
century,” says Peter Sarnak, a number theo-
rist at Princeton University. “It is the last ele-
mentary function we don’t understand.”

Computer calculations by Andrew Odlyzko

of AT&T Labs

Number theo-
rists, who ordinari-
ly study prime
numbers rather
than card games,
are excited by the
solitaire work be-
cause the same
spacing law seems
inherent in their
most famous un-
solved problem—
the Riemann

like dice. In fact, the solitaire game
has a probability distribution that
Diaconis says is “so esoteric that
even mathematicians roll their eyes
at it.” More precisely, it’s the distri-
bution of the largest eigenvalue of a
certain class of random matrices,
which are a mathematical tool fa-
miliar to quantum physicists.

A matrix is nothing more than a
square table of numbers. Each en-
try in the table might, for example,
show the probability that a photon
of wavelength i will emerge from
an atom when it absorbs a photon
at wavelength j. Often, matrices
can be resolved into a “spectrum”
of numbers, called characteristic

Research in Flor-
ham Park, New
Jersey, have
shown a sugges-
tive pattern, how-
ever: The y val-
ues in Rie-
mann’s equation
satisfy exactly
the same spac-
ing law that
eigenvalues of
random matri-
ces do. This
suggests that the
combinations

x+yV-1are, in

values or eigenvalues—and indeed
physicists calculate the spectra of
simple atoms from matrices like
these. In the physical example,
the eigenvalues correspond,
roughly speaking, to excited states that
the atom “likes” to be in.

For large atoms, such calculations are
hopelessly difficult. But by choosing the
matrix at random from a family that has cer-
tain symmetry properties, physicists can re-
produce the distribution of spectral lines sta-
tistically, even if the lines do not exactly
match those of the true atom. The approach,
first proposed by the Nobel Prize-winning
physicist Eugene Wigner, “was an immense-
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Spaced out. Sums of dice in many rolls form a bell-curve
distribution (top). Eigenvalues of random matrices collect
into piles whose even spacing controls the number of
piles in a solitaire game (above).

function. The { function is part of a remark-
able formula, discovered by the German
mathematician Bernhard Riemann in 1859,
that precisely describes how prime numbers
are distributed among the other integers. Ac-
cording to Riemann’s formula, the density
of primes decreases gradually, with a lot of
small fluctuations, as their size get larger.
The size and wavelength of the fluctuations
are controlled by the “zeros of the { func-
tion”: in other words, by the numbers x and

fact, eigenvalues
of some random matrix. At the October work-
shop, Sarnak suggested a way to exploit this
connection. According to Sarnak, the { func-
tion is only one of a “zoo” of related func-
tions, called L-functions. He and his Prince-
ton colleague Nicholas Katz were able
to match one of the tamer sets of
L-functions in this zoo with a family of ran-
dom matrices, whose eigenvalues are known
to lie on the critical line. (Their work is set to
appear later this year as a book published by
the American Mathematical Society.) If this
process could be repeated for the set of
L-functions that includes the Riemann { func-
tion—a big “if "—then the Riemann hypothe-
sis would follow. Sarnak and other number
theorists think the methods developed by
Deift and colleagues might hold clues to how
this could be done.

These hints that random matrices may
hold the key to proving the Riemann hy-
pothesis are adding to what Sarnak de-
scribes as a sense of “euphoria” among
number theorists these days, which began
with Andrew Wiles’s proof of Fermat’s Last
Theorem. “You have the feeling that, if he
can do that, then we can do this problem!”
Sarnak says. —DANA MACKENZIE

Dana Mackenzie is a science and mathematics
writer in Santa Cruz, California.
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