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T he amount of publicly available se- HMM is used to search for patterns and to 
quence data (mainly genomic DNA, detect phenomena in uncharacterized data. 
messenger RNA, and their correspond- HMMs are also used for other biologi- 

ing protein sequences) is increasing expo- cal problems, such as ab initio gene find- 
nentially, primarily as a result of the latest ing (@, detection of unequal evolutionary 
advances in sequencing rates in molecular se- 
techniques andthe HU: TECHV8IjW quences (7), radia- .... .... " .............................. ".. ..... man Genome Project. ~ ~ M P U T & T I ~ # ~ L  I)#OEOQY tion hybrid mapping 

this sequence M&x: w , s c i e n c e m a g , o I ~ C g i ~ ~ m a ~ ~ ~ ~ g ~ ~  (8)3 and protein set- 
data is becoming the ondary-structure pre- 
most valuable source diction (9). These 
of information for the topics, however, are 
understanding of biological processes, the beyond the scope of this review. 
huge amount of data presents many chal- The motivation for using the HMM ap- 
lenges. Two of the most pressing problems proach for modeling protein domains is 
are gene-finding and functional annota- similar to that for using motifs (10) and 
tion. The first problem is simply to find profiles (11-14) to model protein do- 
the genes and the translated proteins hid- mains. The advantages of HMM are its 
den in the billions of base pairs in the nu- precise probabilistic modeling and utiliza- 
cleotide databases. Functional annotation tion of the experience gained from the use 
involves assigning a function, or at least of the same tools in speech. 
partial information concerning the func- Figure 1 shows a multiple alignment of 
tion, to proteins (those hidden in nu- the conserved domain of 20 members of 

being a-deletion. 
Of course, because only a small num- 

ber of sequences have been described, we 
cannot conclude that there is no chance of 
any other amino acid. There are well-de- 
veloped statistical techniques to allot a 
small but positive probability to other 
amino acids in this position by use of the 
knowledge of protein evolution (16). The 
HMM approach models expectations for 
what unknown members of the family 
could be through the use of probabilities 
calculated from the multiple alignment 
and assuming independence (except within 
consecutive deletions and insertions) 
among the amino acids of the protein. 
Thus, each position is modeled separately; 
the concatenation of these amino acid 
probabilistic models is the protein model. 

Figure 2 is an extract from an HMM 
constructed from the multiple alignment in 
Fig. 1. State M16 is the match state corre- 
sponding to position 16 in the multiple 
alignment. From this state, we can move 
with a probability of 50% to D17, thereby 
signifying that position 17 in the multiple 
alignment is deleted from our query se- 
quence. However, there is a 50% probabili- 

cleotide databases 
and those already ex- ~ ~ ~ c ~ c m s - c  E S ~ ~ ~ P E ~ : 5 ~ E C  

pressed in protein -a 

databases). PDGA-RABlT * ?i 
PDGA-RAT 

These two prob- 
lems can be solved in 
the laboratory, but 

ty that the next state 
is M17, where with 
equal probabilities, P 
and R are emitted 
(hence, the probabil- 
ity of R is 50% of 
50%, which is 25%). 

the amount of lab TSISS-MSAV m ! Given an unannotat- 
work needed to ac- PDGB-MOUSE ed protein, we would 

PDGB RAT commodate the large 
PLGF-H"MnN 

like to check 
and growing amount PLGF-MOVSE a . whether it contains a 
of sequence data VEGF-BOVIN -dilll - domain for which we 
available is daunting. VEGF-SHEEP have developed an 
Significant progress VEGF-CAVPO 3 4  HMM. To do this, 
in addressing these VEGF-HUMAN - the protein is aligned 
issues has been made VEGF-PIG * 2 to the HMM accord- 

VEGF-MOUSE - in the past few years 
VEGF_RAT - ? ing to the probabili- 

through the use of VEGF-COTJA - ties (for example, 
computational tech- alignment of a pro- 
niques that are appli- Fig. 1. An example of a multiple alignment (taken from the PDGF family). Different residues are line with a position 
cable even for very colored differently to facilitate identification of conserved regions. of high probability 
large databases. One for proline rather 
of the most powefil computational tech- the platelet-derived growth factor (PDGF) than one of low probability). This can be 
niques is the hidden Markov model family (15). Some positions (such as 1) thought of as aligning the query protein 
(HMM) approach. HMMs have been used are more conserved than others (such as with the multiple alignment that created 
in speech recognition over the past 25 6). For example, at position 17, one-fourth the HMM. 
years (1,2) and for the detection of protein of the sequences have proline (P, 5 se- Computer programs are used to create 
domains in the past 6 years or so (3-5). quences), another one-fourth have argi- and utilize HMMs. Some excellent exam- 
HMMs are very useful for modeling enti- nine (R, 5 sequences) and the remainder ples are HMMer (1 7) and the Sequence 
ties that are composed of a limited set of do not have an amino acid at this position Alignment and Modeling (SAM) system 
simple building blocks, such as phonemes (often called a deleted position). The basis (18). These programs compute the likeli- 
in speech and amino acids in proteins. The of the HMM approach is the assumption hood of the query protein actually con- 

that a new member of the family is likely taining the Gctional domain represented 
l-he author is at cornpugen ~~,j . ,  pinchas-~oren 72, to behave similarly in this position. So by the HMM. The process of modeling 
Tel Aviv 69512, Israel. E-mail: mor@compugen.co.il this position is modeled as having a 25% and using an HMM to find new family 
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members involves several steps: (i) align 
the known members of the family to cre- 
ate a multiple alignment [semi-automati- 
cally (19, 20), see also (21)l; (ii) calculate 
the derived probabilities and build the 
HMM (automatically); and (iii) search 
a protein database with the HMM (auto- 
matically). The HMMer and SAM pack- 
ages address all three steps, as well as 
providing additional HMM-related tools. 
A large database of HMMs of protein 
domains is found in Pfam (22, 23). The 
current version (Pfam 3.2) contains multi- 
ple sequence alignments and HMMs of 
1344 protein do- 
mains, which can 

protein HMMs is 
not limited to 

searching nucleo- 
tide databases. In 

placed by codons, 
and sequencing er- 
rors and introns are 

to that used in searching protein databases 
with the original protein HMM (24,25). 

Currently, experts are annotating ge- 
nomic data using all the information 
available (26). Even then, such work 
yields only "best guess" genes that in 
many cases are incomplete. Novel compu- 
tational techniques can help find the com- 
plete set of human genes. One technique 
may be direct comparison of pairs of ge- 
nomic DNA regions that code to homolo- 
gous genes (either from the same genome 
or beheen different species). A compari- 
son of two genomic DNA sequences con- 

1344 protein do- 
mains, which can 
annotate more than 
50% of the pro- 
teins in Swiss-Prot. 

The use of the 
protein HMMs is 
not limited to 
searching protein 
databases, but can 
also be extended to 
searching nucleo- 
tide databases. In 
this case, the pro- 
tein model is auto- 
matically translated 
to an extended I 

model, where ami- 
no acids are re- 
placed by codons, 
and sequencing er- 
rors and introns are 
also modeled. This Fig. 2. A part of an HMM built from the multiple alignment from Fig. 1. 
is done by dividing Each position in the multiple alignment is represented by three states: a 
most of the proba- match state (M), insert state (I), and delete state (D). The match state 
bility for an amino contains emission probabilities for each amino acid. The insert state al- 
acid into the proba- lows insertions of amino acids after the position of the match state (X 

bilities assigned to stands for an arbitrary amino acid). The delete state enables deletion of 
the appropriate cod- the amino acid, by emitting no amino acid. Transition probabilities be- 

ens, including uem- tween the states define the probability of each state t o  be transvened. 

neousm codons, and The HMM actually used will generally be slightly different, in that it will 

by allowing long have neither 100% nor 0% transition and emission probabilities, t o  ac- 
gaps in he count for unobserved phenomena. 

alignment under cer- 
tain conditions. For example, most of the sidering the presence of one or more con- 
probability for histidine at a given location served genes can be naturally phrased us- 
in the original profile will be divided into ing HMMs (27). 
the probabilities of CAT and CAC, but h c -  The HMM approach is very powerful in 
tions of it will go to the probabilities of finding protein domains in peptide chains, 
"CA," "CATT," and even "CAG," and so as well as nucleotide sequences. However, 
forth, to model various sequencing errors. HMMs are very limited in modeling corre- 
Long segments of the DNA sequence may lations between distant residues. In sec- 
be considered introns and left unaligned ondary-structure prediction, other computa- 
with the coding part of the new model if tional techniques (28) perform better than 
they begin with "GT" and end with "AG." HMMs. In the case of fold recognition prob- 
The intron models currently used are actual- lems, encouraging results are obtained 
ly more complex, and some of them even through use of secondary-structure predic- 
model the ply-pyrimidine tract (which usu- tion and a substantial amount of expert 
ally occurs just before the end of an intron). knowledge, in addition to HMMs (29). 
The extended HMM can be used to search There is still a question whether HMMs are 
nucleotide databases in a very similar way the right tool for incorporating structural in- 

formation into protein domain models. The 
availability of HMM-based tools (1 7, 18, 
25) and protein domain databases (23) en- 
ables even scientists who do not specialize 
in this field to benefit from this powerful 
technique in their effort to annotate 
biomolecules. In view of the multitude and 
nature of the biological data expected to be 
produced in the coming years, it is likely 
that HMMs and other probabilistic tech- 
niques will prove to be even more important 
in the near future. 
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