
which case some of the symptoms could 
reflect molybdenum insufficiency. Finally, 
activation or aggregation of GlyRs might 
modulate the ability of gephyrin to promote 
molybdopterin biosynthesis, thus resulting 
in a functional link between molybdoen- 
zymes and inhibitory neurotransmission. 
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Structure of Human Methionine 
Aminopeptidase-2 Complexed 

with Fumagillin 
Shenping Liu, Joanne Widom, Christopher W.  Kemp, 

Craig M. Crews, Jon Clardy* 

The fungal metabolite fumagillin suppresses the formation of new blood ves- 
sels, and a fumagillin analog is currently in clinical trials as an anticancer agent. 
The molecular target of fumagillin is methionine aminopeptidase-2 (MetAP-2). 
A 1.8 A resolution crystal structure of free and inhibited human MetAP-2 shows 
a covalent bond formed between a reactive epoxide of fumagillin and histidine- 
231 in the active site of MetAP-2. Extensive hydrophobic and water-mediated 
polar interactions with other parts of fumagillin provide additional affinity. 
Fumagillin-based drugs inhibit MetAP-2 but not MetAP-I, and the three-di- 
mensional structure also indicates the likely determinants of this specificity. 
The structural basis for furnagillin's potency and specificity forms the starting 
point for structure-based drug design. 

hgiogenesis; the growth of new blood vessels, 
is a pathological detelminant in tunlor progres- 
sion, diabetic retinopathy, and rheumatoid ar- 
thritis (1). The serendipitous discovely that 
fumagillin, a fi~ngal metabolite; potently inhib- 
its angiogenesis initiated the systematic devel- 
opment of small molecule angiogellesis inhibi- 
tors (2, 3) (Fig. 1). One semisynthetic derivative 
of firnagillin, TNP-470, is in clinical trials as an 
anticancer agent (Fig. 1) (3, 4). Fumagillin- 
based affinity reagents identified MetAP-2 as 
the specific cellular target of fumagillin, and 
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this specificity was confilllled with genetically 
altered yeast strains (5, 6). The correlation be- 
tween the antiproliferative activity of several 
fumagillin analogs with their ability to inhibit 
MetAP-2 activity in vitro suggests that 
MetAP-2 is the physiologically relevant target 
of firnagillin-based therapeutic agents (6). This 
suggestion is strengthened by a recent report 
that human endothelial cells are especially sen- 
sitive to firnagillill and that proliferation of 
these cells can be blocked by human MetAP-2 
antisense oligonucleotides ( 7 ) .  MetAF's, which 

"To whom correspondence should be addressed. E-  Fig. 1. The chemical structure of fumagi\\in and 
mail: jccl2@cornell.edu TNP-470. 
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remove NH2-terminal methionines from pro- 
teins in a nonprocessive manner, are highly 
conserved in sequence (8) (Fig. 2). These co- 
balt-containing metalloproteases are divided 
into two families, type 1 (MetAP-1) and type 2 
(MetAP-2), and fumagillin inhibits the in vivo 
activity of only MetAP-2 (5, 6). 

To investigate hagillin's inhibitory mech- 
anism, we determined the crystal structure of 
human MetAP-2 with and without bound h -  
agillin. Human MetAP-2 (HsMetAP-2) was ex- 
pressed in Sf21 insect cells (9). Crystals of 
HsMetAP-2 were prepared, diffraction data 
were collected at the F1 station of CHESS, and 

. the structure was solved by the molecular re- 
placement method (10, 11). The structure has 
been refined to a fmal R factor of 0.183 and 
0.194 for native and fixnagillin-complexed Hs- 
MetAP-2, respectively, for the 1.8 to 25.0 A 
data (Fig. 3A) (11). 

Earlier crystallographic studies of the 
MetAP-1 from Escherichia coli (EcMetAP- 
1) (12) and the MetAP-2 from Pyrococcus 

furiosus (PfMetAP-2) (13) have defined the 
overall topology of the MetAP family. Like 
EcMetAP-1 and PfMetAP-2, HsMetAP-2 has 
a central p sheet with an active site located 
roughly at the center of the sheet's concave 
face (Fig. 3B). Two pairs of a helices (al-a2, 
a3-a4) and a short COOH-terminal tail cover 
the sheet's convex face (Fig. 3B). 

HsMetAP-2 has several features that distin- 
guish it from the prokaryotic MetAPs (Fig. 2). 
HsMetAP-2, unlike EcMetAP-1 and PfMetAP- 
2, has a 165-residue NH,-terminal extension, 
which is not essential for &opeptidase activ- 
ity (6). In the structure described here, the 
h- te rminal  extension is largely disordered, 
and clear electron density begins at Lys' lo  with 

Fig. 2 Structure-based 
sequence alignment 
of selected MetAP 
sequences based on 
the three-dimensional 
structure of E. coli 
MetAP-1 (MI-ec) (191, 
P. furiosus MetAP-2 
(M2-pf) (ZO), and hu- 
man MetAP-2 (M2-hu). 
Numbers on top are se- 
quence alignment num- 
bers and those on the 
bottom are the se- 
quence numbers of Hs- 
MetAP-2 used here. 
Yeast MetAP-1 (MI -y) 
and MetAP-2 (M2-y) 
sequences are from 
Swiss-Prot (ID numbers 
401662 and P38174, 
respectively). Similar 
and identical sequences 
are shaded by light blue 
and yellow, respective- 
ly. Red triangles are res- 
idues involved in metal 
coordination, and blue t~ 

a disordered loop from residues 138 to 153 
(Fig. 3B). The visible portion of the w - t e r -  
minal extension lies on the convex surface near 
helices a1  and a2  and far from the active site. 

Residues 381 to 444, the long insertion that 
distinguishes the MetAP-2 family from the 
MetAP-1 family (Fig. 2), comprise the end of 
P7, a5, a6, a7, and the beginning of p8 and 
form a compact domain that does not interact 
significantly with the rest of the protein (Fig. 
3B). A small insertion, which includes P4 and 
the beginning of P5 (residues 312 to 319), 
distinguishes eukaryotic from prokaryotic 

MetAP-2. Neither of these insertions disrupts 
the MetAP-1 secondary structure (Figs. 2 and 
3B). The insertions and %-terminal extension 
in HsMetAP-2 break the pseudo twofold sym- 
metry of EcMetAP-1 (12). 

The active site is a deep pocket with two 
cobalts at its base and a completely covered 
side pocket that presumably serves as the spec- 
ificity pocket for the NH2-terminal methionine 
side chain of natural substrates. Reorientation 
of the T f l  side chain and some water mole- 
cules opens this pocket to solvent. The T f l  
residue is completely conserved in the 

Fig. 3. (A) Electron density (I Fc,,,,e, - F,,,,,,I, native phases, 3u contour level) of furnagillin in the 
catalytic pocket of human MetAP-2. An atomic model of the final structure is embedded in this 
electron density. (B) Overall structure of the complex between human MetAP-2 (red, green, and 
blue) and furnagillin (yellow and red ball and stick). The two metals at the catalytic site are dark 
blue spheres partly obscured by fumagillin. Secondary structural elements of MetAP-2 are labeled. 
Drawing prepared with Molscript (78). 
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MetAP-2 family and comes at the end of the 
long insertion that distinguishes the MetAP-2 
family (Fig. 2). In the absence of bagil l in,  the 
cobalts are coordinated by Aspz5', Aspz6', 
His331, G ~ u ~ ~ " ,  G1u459 , and a water molecule. 
The Aspz6' and G ~ u ~ ~ ~  residues are bidentate 
ligands coordinating both cobalts, Aspzs1 is 
bidentate with cobalt 1, G ~ u ~ ~ ~  and His331 are 
monodentate with cobalt 2, and one clearly 
defined water molecule interacts with cobalt 
2. All of the residues that coordinate the 
metals are on p strands near the center of the 
p sheet and are conserved in all MetAP se- 
quences (Fig. 2). 

The electron density for fumagillin was 
clearly visible in the difference electron 
density synthesis (Fig. 3A). Fumagillin has 
several structural components arrayed 
around its conformationally fixed cyclo- 
hexane ring, and a comparison of the active 
site of HsMetAP-2 with and without fum- 
agillin shows how each component contrib- 
utes to binding (Fig. 4, A and B). Earlier 
work had established that covalent bond 
formation causes fumagillin's irreversible 
inhibition, and the x-ray structure shows a 

covalent bond between an imidazole nitro- 
gen ( N E ~ )  atom of Hisz3' and the carbon of 
the spirocyclic epoxide (5, 6) (Fig. 3B). 
The formation of this C-N bond, although 
not predicted, is analogous to the alkylation 
of a catalytic histidine by a-chloroketone 
inhibitors of serine proteases (14). Histi- 
dine-23 1 does not move significantly upon 
bond formation; its nucleophilic imidazole 
nitrogen is perfectly positioned to bond 
with the methylene of the epoxide (Fig. 
4B). The oxygen liberated from the break- 
ing of the epoxide is coordinated with co- 
balt (3.28 A), and it occupies the approxi- 
mate position of the cobalt-associated wa- 
ter molecule in the uncomplexed structure. 
A water that is equidistant from both cobalts 
forms a hydrogen bond with this timagillin 
oxygen (Fig. 4A). The only residue that moves 
significantly upon bagi l l in  complexation is 
His339, which rotates its side chain to avoid 
close contacts with fumagillin (Fig. 4B). 

The epoxide-bearing side chain of fhagil- 
lin occupies the completely covered pocket 
near the active site (Fig. 4B). It has hydropho- 
bic contacts with His331 at the mouth of the 

I 
A ?yp&MM model of fumagih En the binding 

podpet of EcMetAP-1. The side chains of MetAP-1 tht would prwart furnagillin's Mnding in diffwent 
models are shorm in blur; dduas  that would 'bract with fumqi'h arr in gmn The bmg 
unsaturated side chain has W omitted for darity. Drawing ~rawing ptepad Prep MwHhpt (78)- 

pocket, T f l ,  Ile338, His339, and Phe219 (Fig. 
4B). A well-defined water molecule forms hv- 
drdgen bonds with the side chain epoxide a d  
the methoxyl group at C5 (Fig. 4A). The long 
unsaturated side chain protrudes from the bind- 
ing pocket and makes two hydrophobic con- 
tacts with Leu3" and Leuu7, and both residues 
are conserved in the M e w - 2  family (Figs. 3 
and 4A). Leucine-447 lies near the end of the 
insertion that defines the MetAP-2 family, and 
the constriction formed by the L ~ u ~ ~ - L ~ u ~ ~ ~  
pair provides a structud basis for the MetAP-2 
family's requirement for a substrate with a 
small (< 1.3 A radius of gyration) side chain at 
P2 (1.5). The terminal carboxyl of the side chain 
makes a hydrogen bond with Asp376. Fumagil- 
lin can be analyzed as a substrate mimic with 
the epoxide-bearing side chain resembling me- 
thionine's side chain and the opened epoxide 
substituting for a nucleophilic water near the 
scissile carbonyl bond. The long unsaturated 
side chain protruding from the pocket mimics 
the COOH-terminal peptide chain. 

The ability of fumagillin and related com- 
pounds to covalently inhibit MetAP-2 is even 
more remarkable in light of their specificity for 
MetAP-2 over MetAP-1 because the two en- 
zymes have very similar active sites (Fig. 2). In 
yeast, either MetAP-1 or MetAP-2 function can 
be eliminated and the remaining enzyme will 
compensate (16). Elimination of both MetAP-1 
and MetAP-2 function is lethal (16). Features 
that might generate such specificity can be 
highlighted by superimposing the 81 central 
core residues of HsMetAP-2 and EcMetAP-1 
(0.83 A root mean square deviation for main 
chain atoms) (Fig. 4C). In this superimposed 
model, E c H ~ s ~ ~ ,  the residue that would co- 
valently bond furnagillin, is too far away to 
form a bond. Two compensatory modifications 
are possible: moving furnagillin by about 1.6 A 
toward EcH~s'~ or moving E c H ~ s ~ ~  toward 
fumagillin. Moving furnagillin leads to severe 
steric clashes of C5 and the C6 methoxyl group 
with E ~ T y r l ~ ~  and of C7 and C8 with E C C ~ S ' ~  
(Fig. 4C). Tyrosine-168 is conserved in the 
MetAP-1 h i l y ,  and its smaller counterpart, 

is conserved in the MetAP-2 family 
(Fig. 2). In addition to the steric clashes, the 
fumagillin oxygen that interacts with cobalt 2 
would be more than 5 A away from either 
cobalt, a distance greatly in excess of a metal- 
water interaction. 

Moving &His79 to bond with furnagillin 
also has troublesome features. The first is the 
assumption that can be moved because 
its position appears to be fixed by a series of 
hydrogen bonds involving both main and side 
chain atoms between 01 and P2. The positions 
of E c H ~ s ~ ~  and HsHisZ3' are also influenced by 
the adjacent residues, which are strongly con- 
served in both families: Ala-Ala-His-Tyr/Phe in 
MetAP-2 and VaVIle-Cys-His-Gly in MetAP-1 
(Fig. 2). If E c H ~ s ~ ~  could be moved to bond 
with timagillin, there would be problems ac- 
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coinmodating fumagillin's side chain in the 
specificity pocket. In h?etAP-1, the size of the 
conserved Phe"7 ( H ~ 1 l e ~ ~ ~ )  makes the pocket 
substantially nassower (Figs. 2 and 4C). The 
relatively slim side chain of methionine can be 
accommodated in this narrower wocket whereas 
the bulky and conformationally resh_icted side 
chain of furnagillin cannot. Because MetAP-1 
lacks Ty1"44 and has an open specificity pocket, 
the narrower pocket would be easily accessible. 
Thus, firnagillin's inability to i h b i t  MetAP-1 
can be traced to the position of the nucleophilic 
His in MetAP-1, the difficulty of repositioning 
this residue because of consistent size differenc- 
es in the adjacent resid~ies: and a narrowing of 
the specificity pocket. 

Our results provide a structural frame- 
work for understanding the relation of human 
MetAP-2 to prokaryotic and other eukaryotic 
MetAPs, fumagillin's ability to inhibit 
MetAP-2; and the basis of fumagillin's spec- 
ificity. Insights fkom this analysis will also be 
useful in structure-based drug design. Fum- 
agillin-based therapeutics such as TNP-470 
share filmagillin's conformationally rigid 
template and key features. The two drugs 
differ in the side chain at C6, a region that 
shows fen,, if ,any. ligand interactions. Thus, 
TNP-470 is likely to inhibit MetAP-2 by 
occupying the active site in the same fashion 
as fumagillia. 
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A Structural Explanation for the 
Recognition of Tyrosine-Based 

Endocytotic Signals 
David J. Owen and Philip R. Evans* 

Many cell surface proteins are marked for endocytosis by a cytoplasmic se- 
quence motif, tyrosine-X-X-(hydrophobic residue), that is recognized by the ~2 
subunit of AP2 adaptors. Crystal structures of the internalization signal binding 
domain of p2 complexed with the internalization signal peptides of epidermal 
growth factor receptor and the trans-Colgi network protein TGN38 have been 
determined at 2.7 angstrom resolution. The signal peptides adopted an ex- 
tended conformation rather than the expected tight turn. Specificity was con- 
ferred by hydrophobic pockets that bind the tyrosine and leucine in the peptide. 
In the crystal, the protein forms dimers that could increase the strength and 
specificity of binding to dimeric receptors. 

The localization and movement of compart- 
ment-specific proteins withn the cell is largely 
achieved through the recoption of short se- 
quence motifs by targeting proteins. One of the 
most studied processes involving such signal 
recognition is clathnn-mediated endocytosis, 

Medical Research Council Laboratory of  Molecular 
Biology, Hills Road, Cambridge CB2 ZQH, UK. 

*To whom correspondence should be addressed. E- 
mail: pre@mrc-lmb.cam.ac.uk 

which occurs in vesicle trafficking and the in- 
ternalization of nutsient and growth factor re- 
ceptors when bound to their appropriate cargo 
molecules [reviewed in ( I ) ] .  During the inter- 
nalization of activated growth factor receptors 
such as the epidermal growth factor receptor 
(EGFR) tyrosine kinase [reviewed in (2)];  re- 
ceptors are removed from the cell surface in 
clathrin-coated vesicles and ultimately directed 
to the endosome and lysosome, where they are 
inactivated by proteolytic degradation (3, 4). 
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