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hybritl (RH) panels I A-1 0).  1la1.e pro~.idetl the 
info~nlation. infiast~-uct~~re. and teclmology to 
proiiucr such maps 111 an eflicient ant1 econom- 
~ c a l  manner. 

I11 1994, an international conso~tium n.as 
formetl to construct a human gene map in 
\\-l1ic11 cDNX-based sequence-tagged site (STS) 
marl<ers v w e  physiccrlly mal~petl and then in- 
tegrated \\it11 the genetic map of polymorphic 
microsatell~te marl<ers (11 ). The initial report of 
this consoltllum in 19% described a map of 
- 16.000 genes (171. X neu map. repolted here. 
represents a nearly 100° b increase in gene den- 
sit! and map accurac) and ma) contain up to 
half of all human protein-cotling genes. T h ~ s  
map sl~oultl he a valuable resource for the po- 
sitional canditlate cloning of coml3le\ (polygen- 
ic) tlisease loci. the constmetion of complete 
ph).sical maps of chromosomes for genome 
sequencing. and comlxrati\-e analysis of mam- 
malian clu.omoso~ne structure and evolution. 
Furthermore. \equence validatioa that occurs ia 
the process of STS design and mapping creates 
a il~~ality-assured gene seilllcnce resource for 
"fimctional gcaomics" applicatio~ls ( 13) such as 
the design and construction of large-scale gene 
expression arrays. 

This new sene map co~lsists of data from 
41.664 STSs (Table 1).  .As in the previous map 
(I.?). they are based on 3' ~mtraaslated regions 
of c D h . 4 ~ .  These STSs represent 30.181 
unicj~~e genes. Markers n ere hped on the Gene- 
bridge4 (GB3) RH  anel el (39.886 cDKAs. I64 1 
~llicrosatcllite markers. and 13 tclo~lleric mark- 
ers). on the G3 RH paael (5013 cDYAs and 
2091 n~icrosatellites), or on both panels (1 102 
microsatellites), .All GB4 data (Table I )  \\ere. 
for the first time. merged into a single map anti 
aliglletl \\it11 the G3 RH map and the genetic 
lnap ( l I )  \\ it11 the 1101 microsatellite marl<ers 
that are common to all three maps. The inte- 
gated map is available at ~~~v~ \~ .ncb i .n lm.n ih .  
goy genemap. In addition, hvo \\'el7 seners 
[one for each RH panel ( I  J ) ]  pernlit anyone to 
map a net\ marker relatibe to this map. 
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This new nlap is hvofold to threefold nlore 
accurate than the 1996 gene map by se\-era1 
criteria. Some nlarlters were nlapped in dupli- 
cate to make it possible to detect discrepancies 
between independent experimental results. The 
enor rate in assignment of the same marker to 
different clu.omoson~es was 0.52% (compared 
with 1% in the 1996 map). The error rate in 
clro~nosome assignnieut was also assessed, 
with the e-PCR program (IS), by matching 
STSs to 122 Mb of human genonlic seq~lence 
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data present in Ge~lBank as of Aplil 1998. 
Twenty-tluee of the 2134 STSs tested matched 
a geno~llic sequence from a different chromo- 
some from that determined by the RH mapping. 
co~responding to an elror rate of 1.08% (3.76% 
for the 1996 map). To assess the accuracy of 
marker placements along the cl~ornosomes, we 
conve~ted positions of nlarkers on the GB4 and 
G3 nlaps (in cR3000 and cR10000 coordinates, 
respecti\-ely) to centinlorgan (cM) coordinates 
on the genetic map for direct comparison. Only 
1.35% of marlters were discrepant by 10 cM or 
more (2.5% for the 1996 map): and 1.78% of 
markers had positions differing by 5 cM. This 
substantial improvement in quality of the new 
map is due primarily to retyping or remo\-a1 (or 
both) of markers suspected of being in error on 
the basis of analysis of the prel ious map. 

The chromosomal distribution of 30,075 
distinct gene-based markers (excluding those 
with coilflicting chromosome assignnlents) is 
given in Table 2. The ratio of observed versus 
expected genes per chromosome [based on the 
physical length of each chronlosome (/A)] in- 

Table 1. N u m b e r  o f  markers in t h e  current and pre 

dicates a significantly higher gene density for 
clu.omoso~nes 1: 11, 17: 19: and 22 and a 
significantly lower gene density for chromo- 
somes 3, 5. 8, 13, 18. and X. 

The total n~mlber of human genes has been 
estimated at 60,000 to 70,000 (1 7). Therefore. 
this map contains transcript markers approach- 
ing half of all human genes. The map includes 
18,703 of the 46:045 entries in LrniGene (7) 
and 3683 (78%) of the about 6000 human genes 
of known function (18). \\'ark is continuing not 
only to map all reinailling u~mlapped cDKAs 
but also to redevelop and retype marlters for 
cDY.4s that failed initial mapping attempts. 
Yew efforts by the conlnlunity to convel-t ex- 
pressed sequence tags (ESTs) into more accu- 
rate and conlplete cDNA clones and sequences 
(3) will aid this process enolmously. 

The main practical \-alue of having a dense 
and integrated genetic-physical map of genes is 
to accelerate the discol.e~y, by positional and 
positional candidate cloning (19), of hu~nan 
disease genes. In the calendar year after publi- 
cation of the 16,000-gene inap (12). isolation of 

vious gene maps b y  contr ibutor 

Contr ibutor 
1996 1998 

gene m a p  gene m a p  

Sanger Centre 
Whitehead Inst i tute/MIT Center fo r  Genome Research 
Genethon 
Stanford H u m a n  Genome Center (C3 Rh panel) 
Wel lcome Trust Centre fo r  H u m a n  Genetics 
Nat iona l  H u m a n  Genome Research lns t i tu te  
Universi ty o f  Colorado Health Sciences Center 
Kazusa D N A  Research lns t i tu te  
Tota l  gene-based markers 

Table 2. Chromosome distr ibut ion o f  d ist inct  gene-based STS markers. 

Chromosome Observed Expected 
Observed/ 

expected ra t io  

'Statistically significant at P 10.001 
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16 genes by positional approaches was reported 
(20). Retrospective analysis shows that 31% (7 
out of 16) of these genes had already been 
isolated as ESTs and mapped at the time of their 
cloning. This fraction increases to 69% (1 1 out 
of 16) when the data fro111 the current inap are 
considered. 

Comparative analysis has a long and hitfi l l  
histoly in biology: and detailed comparative 
maps of mammalian genomes have shed light 
oil chromosome evolution. The identification 
and cross-referencing of genes allow insights 
into similarities and differences of physiology 
and development as well as candidates for 
transgenesis and gene knockout experiments. 
Thus. it was of interest to determine the extent 
to which genes on the current human inap could 
be related to orthologous genes in other mam- 
mals. Makalonrski and Boguslu (21) have as- 
sembled a set of 1880 human genes along with 
their rat or mouse (or both) orthologs. \511en 
these genes were analyzed for overlap with the 
30,181 mapped human genes in the culrent 
study. \Ire found that 70% of these human genes 
\vith rodent counterparts are present. This data 
set therefore provides an excellent index for 
cross-referencing the human map with emerg- 
ing gene-based physical nlaps of the mouse and 
rat genomes (22). 

Genome-scale expression inonitoring or 
profiling (23); a rapidly expanding area of f k c -  
tlonal genomics. relies oil the availability of 
large catalogs of cDNA sequences 01 anays of 
clones (01 both) The pioblenls posed by se- 
quence redundancy and nlaccuiacy are as cnt- 
ical foi gene explesslon applications as the! 
have been for trailscript mapping. Furthermore, 
additional problems in these catalogs have be- 
come apparent. necessitating the authenticatioi~ 
of sequences and clone reagents. Our collection 
of nearly 42,000 successf~~lly mapped, gene- 
based STSs, representiilg -30,000 uniq~le hu- 
man transcripts. provides a large, validated set 
of human sequences that can be used to design 
gene-specific oligonucleotides or select cDNA- 
dern ed polymerase chain reaction products for 
populating gene expresslon anays (or both) 
Use of this set could lead to a ~ e r y  usefill 
confluence of mapping and expression informa- 
tion for human genes. 

We have produced a map containing per- 
haps half of all human genes. In the future, 
this inap and subsequent versions ~vill  ulti- 
mately be replaced by the complete sequence 
of the human genome. Until then, this refer- 
ence resource should contribute substantially 
to the advancement of structural and fi~nc- 
tional genomics. to comparative biology, and 
to the isolation of human disease genes, par- 
ticularly those underlying complex traits. 
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Ordering of the Numerosities 
1 to 9 by Monkeys 

Elizabeth M. Brannon and Herbert S. Terrace 

A fundamental question in cognitive science is whether animals can represent 
numerosity (a property of a stimulus that is defined by the number of dis- 
criminable elements it contains) and use numerical representations computa- 
tionally. Here, it was shown that rhesus monkeys represent the numerosity of 
visual stimuli and detect their ordinal disparity. Two monkeys were first trained 
to respond to exemplars of the numerosities 1 to 4 in an ascending numerical 
order (1 -> 2 -> 3 i 4). As a control for non-numerical cues, exemplars were 
varied with respect to size, shape, and color. The monkeys were later tested, 
without reward, on their ability to order stimulus pairs composed of the novel 
numerosities 5 to 9. Both monkeys responded in an ascending order to the novel 
numerosities. These results show that rhesus monkeys represent the numer- 
osities 1 to 9 on an ordinal scale. 

Many animal taxa can discriminate stilnuli dif- maintain that animals attend to numerosity as a 
fering in nun~erosity (I). The importance of this "last resort," that is, only if all other bases for 
capacity has evoked considerable controversy. discrimination are eliminated (for example, the 
Some have argued that animals have a nahlral shape, color, brightness, size, frequency, or du- 
ability to discriminate numerosity (2, 3); others ration of a stimulus) (4). 
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