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M athematical concepts and systems 
of notation are intertwined with hu- 
man cultural history. The discovery 

(or invention) of 0, understanding of nega- 
tive, rational, and real numbers, and devel- 
opment of the calculus took place over 
thousands of years. But what of those most 
fundamental of mathematical objects, the 
positive integers: 1,2, 3,4, 5, . . .? Until re- 
cently, the consensus was that the capacity 
to represent the positive integers was also 
the product of culture, dependent on the 

numbers 1 to 9. Brannon and Terrace 
build on Terrace's previous demonstra- 
tions of rhesus representation of serial or- 
der. For example, presented with pictures 
of a cup, a table, a car, and a flower on a 
TV touch screen, rhesus monkeys can 
learn to touch them in any arbitrary order, 
irrespective of their position on the screen. 

uniquely human capacity for language. A 
new study on the represention of number 
in animals, on page 746 of this issue ( I ) ,  
along with studies of the representation of 
number by prelinguistic infants (2), are un- 
dermining that consensus. 

The consensus was based on two con- 
siderations. First,' not all human languages 
contain a list like "one, two, three ..." 
Such a representational system developed 
slowly, through several stages, as docu- 
mented by historical language studies (3). 
Second, even in highly numerate cultures, 
such as ours, children require a two year 
apprenticeship to master their language's 
integer list (4). 

Nevertheless, it is now clear that ani- 
mals on many branches of the evolution- 
ary tree have the capacity to represent 
number (5). To establish that animals have 
this capacity, one must show first that they 
distinguish between sets of individuals on 
the basis of true numerical differences 
rather than, say, total volume of the ind- 
viduals or spatial density of the scene. 
Second, one must show that these distinc- 
tions between sets carry numerical mean- 
ing for the animal. Minimally, the animal 
should represent that 1 is less than 2, and 
2 is less than 3, and so on. It is not enough 
to know that 1 is different from 2 and 2 is 
different from 3, and so on. 

For those not already convinced that 
nonhuman animals genuinely represent 
number, the new data presented by Bran- 

on ones at the end of the training series, 
each seen 60 times. 

But which rule did the monkeys learn? 
"Touch 1, then 2, then 3, then 4" or "touch 
the items in order of increasing m e r o s i -  
ty"? To answer this, Brannon and Terrace 
gave the monkeys new problems with sets 
of stimuli having between 1 and 9 ele- 
ments. They found that the monkeys gen- 
eralized the rule "touch the lower number 
of items before the higher one" when pre- 
sented with stimuli containing set sizes 
that they had not been taught (for exam- 
ple, 5 versus 7). This demonstrates that 
the monkeys were capable not just of the 
representation of numerical order, but also 

of the abstraction of a nu- 
merical rule. More impor- 
tant, it shows that the repre- 
sentations of number under- 

How many? Examples of stimuli used to PI 
representation in rhesus monkeys (7). 

The initial experiment of the new work 
begins by showing that rhesus monkeys 
can learn to order sets of stimuli that con- 
sist of 1 element, 2 elements, 3 elements, 
and 4 elements .(see examples of each nu- 
merosity in figure). Plainly, each set of 
stimuli forms an arbitrary list of four 
items, so how does this experiment go be- 
yond Terrace's previous demonstrations 

lying success in the first 
study are not restricted to the 
subitizing range (1 through 
4, the range in which humans 
can simply look at a set of 
objects and know how many 

- there are without explicitly 
counting). 

Because it would be very 
surprising if the abilities that 
Brannon and Terrace demon- 
strate for rhesus monkeys - were entirely absent in hu- 
mans, these results challenge 
the consensus that the capac- 
ity to represent numerals is a 
cultural construction. But to 
establish whether these rep- 
resentations are the evolu- 
tionary source of the human 
number capacity, we must 
ask whether-they &e its onto- 
genetic source. That is, are 

  be numerical these abilities available to in- 
fants before they acquire lan- 
guage, and are they the foun- 

dation of the culturally constructed integer 
list representations? 

Although the literature on numerical 
representation by prelinguistic infants con- 
tains nothing so impressive as the results of 

' Brannon and Terrace, it is clear that young 
infants (4.5 to 8 months of age) have some 
numerical competence. For example, they 
discriminate between stimuli consisting of 

non and Terrace elegantly demonstrate of rhesus learning to order arbitrary lists? 1,2, and 3 elements, and even expect that 1 
both that rhesus monkeys distinguish be- In the current report, the question was item added to an array consisting of 1 hid- 
tween sets of individuals on the basis of whether rhesus monkeys would learn the den item will yield an array of exactly 2 
number and that they can represent all the rule, "touch 1, then 2, then 3, then 4," items (that is, 1 + 1 = 2), as well as that 2 - 
ordinal relations that exist among the when each list has objects of varying 1 = 1,2 + 1 = 3, and 3 - 1 = 2 (2). There is 
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cal bases of discrimination, such as total 
stimulus area. And finally, there has been 
no convincing demonstration that infants 
represent the ordinal relations among sets 
of l , 2 ,  and 3 elements. 

How might nonhuman animals and 
prelinguistic infants represent number? 
Two classes of models for nonlinguistic 
numerical representational systems have 
received empirical support: object file 
models and analog magnitude models. In 
the object file model, the infant or monkey 
forms a representation with one symbol 
for each individual in the set and compares 
representations by computing one-to-one 
correspondences between sets. Such repre- 
sentations are limited to the number of in- 
dividuals that can be held in short-term 
memory at any one time, which is 3 or 4. 
These representations contain no symbols 
that function as numerals, and there is no 
counting process. In analog magnitude 
models, number is represented by a con- 
tinuous quantity, akin to a number line. 
Representations are compared by the same 
sorts of operations that compare lengths, 

durations, volumes, and other representa- 
tions of continuous quantities. The process 
by which the analog magnitude is incre- 
mented for each item in the set is equiva- 
lent to counting (6), but analog magnitude 
models differ in many ways from integer 
list models ( 7 ) .  

Brannon and Terrace's data favor an 
analog magnitude model. Their monkeys 
represent numbers that exceed the limits 
of the object file model. Further, analog 
models correctly predict that number com- 
parisons become easier when the differ- 
ences between the numbers are greater 
(the distance effect). By contrast, for in- 
fants the evidence favors the conclusion 
that the object file model underlies the 
prelinguistic numerical representations in 
the events studied to date ( 7 ) .  There is also 
considerable indirect evidence that the in- 
teger list symbolic representation of num- 
ber is built from object file repiesenta- 
tions, and not from analog magnitude rep- 
resentations (4) ,  even though human adults 
certainly use the latter as well (5). 

The upshot is that one evolutionary 

P E R S P E C T I V E S :  P R O T E I N  F O L D I N G  

A Glimpse of the Holy Grail? 
Herman J. C. Berendsen 

T he prediction of the native conforma- ing. The obvious route to that goal is by 
tion of a protein of known amino homology modeling: use as much infor- 
acid sequence is one of the great mation as you can get from the database 

open questions in molecular biology and of known structures. But at the present 
one of the most demanding challenges in level of sophistication, such methods are 
the new field of bioinformatics. Using fast effective for only about 25% of the pro- 

source of human number representation- 
the analog magnitude representations that 
Brannon and Terrace most probably are 
tapping in primates-is not the primary 
ontogenetic source of human symbolic 
number list representations, either in lin- 
guistic evolution or in individual develop- 
ment. Although this conclusion is contro- 
versial, our challenge is clear. We must 
specify the nature of nonlinguistic repre- 
sentations of number (there may be many) 
and characterize the process by which ex- 
plicit symbolic representations are con- 
structed in the history of each culture and 
again by each child. 
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vent. These atomic interactions are ele- 
mentary and well-known, so why can't we 
use this knowledge to mimic the native 
folding process? Well, for two reasons: 
First, existing computers cannot sample 
enough configurations in a reasonable 
time to come up with the thermodynami- 
cally stable native structure; second, we are 
not too sure that the available force field 
descriptions, which we need to compute 

overoptimistic view? 
With the number of known gene se- 

quences increasing at an accelerating pace 
(the complete genomes of 13 bacteria and 
of yeast are now known, the first multicel- 
lular animal will follow soon, three plants 
and the fruit fly are in the pipeline, and 
the human genome sequence can be ex- 
pected at the beginning of the next centu- 
ry), the quest for the structure and func- 
tion of the coded proteins becomes press- 
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Unfolding is easier than folding. Four snapshots from the simulation of an unfolding protein called 
HPr (a phosphate-transferring protein): (A) native conformation, (B) partly unfolded conformations 
that still contain most of the secondary structure, and (C) an unfolded (or randomly folded) structure. 

teins for which the amino acid sequence is 
known; if sequence homology drops be- 
low 25%, the reliability of database-ori- 
ented methods drops to nearly zero. 

Still, most small proteins fold sponta- 
neously in seconds into their native confor- 
mations; secondary structure elements like 
a helices or P turns fold in tens of 
nanoseconds to microseconds. Such fold- 
ing is thermodynamically downhill and is 
just a result of the physical interactions be- 
tween atoms, including those of the sol- 

the energy of each configuration, are accu- 
rate enough to come up with a reliable free 
energy of a conformation. The trouble re- 
sides in the enormously large positive and 5 
negative contributions that nearly cancel in 
the computation of the total energy. P 

The sampling problem can be summa- $ 
rized as Levinthal's paradox: If we assume $ 
three possible states for every flexible di- $ 
hedral angle in the backbone of a 100- Z 
residue protein, the number of possible ; 

P 
backbone configurations is 3200. Even an e 
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