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Phosphorylation and Activation 
of 13s Condensin by CdcZ 

in Vitro 
Keiji Kimura, Michiko Hirano, Ryuji Kobayashi, Tatsuya Hirano* 

135 condensin is a multisubunit protein complex essential for mitotic chromosome 
condensation in Xenopus egg extracts. Purified 135 condensin introduces positive 
supercoils into DNA in the presence of topoisomerase I and adenosine triphosphate 
in vitro. The supercoilingactivity of 135 condensin was regulated by mitosis-specific 
phosphorylation. Immunodepletion, in vitro phosphotylation, and peptide-mapping 
experiments indicated that CdcZ is likely to be the kinase that phosphotylates and 
activates 135 condensin. Multiple CdcZ phosphorylation sites are clustered in the 
carboxyl-terminal domain of the XCAP-DZ (Xenopus chromosome-associated 
polypeptide DZ) subunit. These results suggest that phosphotylation of 135 con- 
densin by CdcZ may trigger mitotic chromosome condensation in vitro. 

Chromosome condensation is a fundamental mitotic events including chromoson~e con- 
cellular process that ensures the faithful seg- densation, but the underlying ~nolecular 
regation of genetic information during mito- ~nechanisms are poorly understood ( I .  2). 13s 
sis and meiosis. Activation of the protein condensin, a five-subunit protein complex 
kinase Cdc2 triggers a series of downstream purified from iYenopzrs egg extracts, is an 

essential regulator of mitotic chromosome 
step, but removing the sample led more miform Cold Spring Harbor Laboratory, Post Office Box 100, 1 condensation (3, 4). The two core subunits of 
and sharp peaks. Platinum electrodes placed in the Bungtown Road, Cold Spring Harbor, NY 11724, USA. 13s condensin, XCAp-C and XCAp-E, be- buffer wells were used for both the injection and 
running of the sample. *To whom correspondence should be addressed. long to the SMC (structural maintenance of 
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Fig. 1. Mitosis-specific and A cBB 
phosphorylation-dependent 

P P I  

supercoiling activity of 135 
condensin. (A) Characteriza- 
tion of 135 condensin ~uri-  
fied from a mitotic (M) 6r an 
interphase (I) extract (8). 
CBB, Coomassie stain; [32P], 
autoradiography of conden- 
sin subunits purified from 
32P-labeled extracts: C. 
XCAP-C; D2. X C A P - ~ 2 ;  E: 1 1  I 
XCAP-E; G ,  XCAP-G; H ,  
XCAP-H; H-blot, immunoblot 
with anti-XCAP-H. (B) Super- 
coiling and DNA binding ac- 
tivities of the mitotic (lanes 2 
to 4) or interphase (lanes 6 to 
8) form of 135 condensin 
(cond.). Calf thymus (top) or 
E. coli (middle) topoisomer- 
ase I was supplemented into 

II 1 
the supercoiling reactions but 
was omitted in the D N A  C 

6 
no condensin 

binding assay (bottom) (7). 
DNA was purified (top and .- c 
middle) or unpurified (bot- c 

tom), electrophoresed on a .- E 
0.7% agarose gel, and visual- v - 
ized by Southern blotting (9). 

U1 - 
The molar ratios of 135 con- 

B mitosis interphase 

mitosis interphase 

densin to DNA in the reac- 
tion mixtures were - 9 : l  

2nd dimension 

(lanes 2 and 6), -18: 1 (lanes 
3 and 7), or -36:l (lanes 4 and 8). Lanes 1 and 5, no protein; s, positively supercoiled DNA; arrow. 
free DNA; asterisk, DNA bound to 135 condensin. (C) Two-dimensional gel electrophoresis. 
Substrate DNA (a mixture of nicked circular and relaxed circular DNA) was subjected to the 
supercoiling assay with E. coli topoisomerase I, fractionated on a two-dimensional agarose gel, and 
visualized by Southern blotting (9). Left, no condensin; center, mitotic 135 condensin; right. 
interphase 135 condensin. The molar ratio of protein to DNA was -36:l. Abbreviations: nc, nicked 
circular DNA; rc, relaxed circular DNA; s, positively supercoiled DNA; ns, expected position where 
negatively supercoiled DNA migrates. 

I,] : 
n 

C mocltdep cdc2dep 
- - 4 wnd. 

Fig. 2. Control of supercoiling activity of 135 condensin by Cdc2. (A) Effects of CdcZ depletion. 
Mitotic extracts were immunodepleted with control immunoglobulin C (lane 1) or anti-Cdc2 (lanes 
2 and 3) (7 I), and Cdc2-cyclin B purified from a Xenopus egg extracts (73) was added back to one 
portion of the depleted extract (lane 3). Amounts of CdcZ protein (cdc2) and histone H I  kinase 
activity in the extracts were measured. Phosphorylation of condensin subunits was analyzed by 
immunoprecipitation from 32P-labeled extracts ([32P]) or by immunoblotting with anti-XCAP-H 
(H-blot). (B) Condensation assay. Xenopus sperm chromatin was mixed with an interphase (I), 
mock-depleted mitotic (M), Cdc2-depleted mitotic (MAcdcZ), or Cdc2-reconstituted (MAcdcZ+cdcZ) 
extract. After 3 hours at 2Z°C, chromatin was fixed and stained with 4',6'-diamidino-2-phenylindole 
(DAPI) (72). (C) Supercoiling activity of 135 condensin purified from the mock-depleted (lanes 2 to 4) 
or Cdc2-depleted (lanes 6 to 8) extracts. Lanes 1 and 5, no protein. The molar ratios of protein to DNA 
were the same as in Fig. 1B. 

chromosomes) family of chromosomal aden- 
osine tiphosphatases (ATPases) (2, 5). The 
remaining three subunits, XCAP-D2, XCAP- 
G, and XCAP-H, may have regulatory roles 
in condensin function (4). Genetic studies in 
yeasts, Drosophila, and Caenorhabditis el- 
egans show that (at least some of) the con- 
densin subunits are essential for chromosome 
condensation and segregation in vivo (6).  
When purified from mitotic extracts, 13s 
condensin has a DNA-stimulated ATPase ac- 
tivity and can introduce positive supercoils 
into relaxed circular DNA in the presence of 
ATP and topoisomerase I. This activity may 
contribute to chromosome condensation dur- 
ing mitosis (7). 

To test whether the positive supercoiling 
activity of 13s condensin is regulated during 
the cell cycle, we purified 13s condensin 
from mitotic or interphase extracts of Xeno- 
pus eggs by immunoaffinity column chroma- 
tography (8). The subunit compositions of the 
two forms were indistinguishable, although 
three of the five subunits (XCAP-D2, XCAP- 
G, and XCAP-H) were phosphorylated in a 
mitosis-specific manner (Fig. 1A) (4). Be- 
cause of this modification, the electrophoretic 
mobility of the mitotic form of XCAP-H was 
decreased (Fig. 1A). When this mitotic form 
of 13s condensin was incubated with a re- 
laxed circular DNA in the presence of ATP 
and topoisomerase I (purified from calf thy- 
mus or Escherichia colil. the D N A  was con- , , 
verted into a ladder of supercoiled forms in a 
dose-dependent manner (Fig. 1B) (9). In con- 
trast, the supercoiling activity was barely de- 
tectable in the interphase form of 13s con- 
densin, although it exhibited a DNA binding 
activity comparable to that of the mitotic 
form of 13s condensin (Fig. lB, bottom). 
Two-dimensional gel electrophoresis con- 
firmed that the mitotic condensin induced 
positive supercoiling (Fig. 1C). Changes in 
the average linking number of the substrate 
DNA were measured to be +3.3 with the 
mitotic form and +0.1 with the interphase 
form under this condition (9). The supercoil- 
ing activity was highly reproducible between 
different preparations. Treatment of the mi- 
totic condensin with A protein phosphatase 
(A-PPase) resulted in a decrease in supercoil- 
ing activity accompanied by dephosphoryl- 
ation of the three subunits (lo), which sug- 
gested that the activity is regulated by mito- 
sis-specific phosphorylation. 

In an attempt to identify the kinase or 
kinases that activate the supercoiling activity 
of 13s condensin, we immunodepleted Cdc2 
from a mitotic extract (11). The efficiency of 
immunodepletion was estimated to be >95% 
by both immunoblotting and measurement of 
histone H1 kinase activity (Fig. 2A). Deple- 
tion of Cdc2 resulted in reduced phosphoryl- 
ation of the condensin subunits and loss of 
the condensation activity of the extract. In a 

488 16 OCTOBER 1998 VOL 282 SCIENCE www.sciencemag.org 



R E P O R T S  

control mitotic extract, sperm chromatin un- 
derwent a series of structural changes and 
was eventually transformed into a cluster of 
mitotic chromosomes (Fig. 2B) (12). In con- 
trast, the chromatin was converted into a 
round structure in the Cdc2-depleted extract 

is phosphorylated and activated either by 
Cdc2 itself or by kinases activated by Cdc2. 
Several consensus sites for phosphorylation 
by Cdc2 (14) exist in the sequences of 
XCAP-D2 (15.16) and XCAP-H (4) ,  and we 
tested whether purified Cdc2 phosphorylated 
these subunits in vitro. A purified Cdc2- 
cyclin B fraction phosphorylated the XCAP- 
D2 and XCAP-H subunits of 13s condensin 
isolated from an interphase extract (Fig. 3A) 
(1 7). This treatment converted the interphase 
13s condensin into an active form that sup- 
ported positive supercoiling of DNA (Fig. 
3B). Two-dimensional tryptic phosphopep- 
tide mapping (18) revealed three major pep- 
tides of XCAP-D2 phosphorylated by Cdc2- 
cyclin B that aligned with those labeled in 

mitotic extracts (Fig. 3C), suggesting that 
Cdc2 itself may phosphorylate XCAP-D2 in 
mitotic extracts. The maps of XCAP-H were 
more complex: At least 10 spots were detect- 
ed in mitotic extracts, and five of them mi- 
grated with peptides phosphorylated by 
Cdc2-cyclin B. Thus, additional kinases are 
apparently required for full phosphorylation 
of XCAP-H. Nevertheless, after phosphoryl- 
ation by Cdc2+cyclin B, the specific activity 
of 13s condensin from interphase extracts 
was comparable to that of 13s condensin 
purified from mitotic extracts. 

To test whether Cdc2 consensus sites in 
the COOH-terminal region of XCAP-D2 are 
phosphorylated by Cdc2, we synthesized three 
phosphopeptides, each of which contained a 
single phosphothreonine, and prepared phos- 
pho-specific antibodies (19). The peptides 
were DPl (EDDFQ~~os~~oT~~~~PKPPA), 
DP2 (LSEAE~~OS~~OT~~~~PKNPT), and DP3 
(TPKNP~~O~~~OT~~~~PIRRT) (16). Affinity- 
purified anti-DP1 recognized the mitotic form, 
but not the interphase form, of XCAP-D2, nor 
did it recognize the mitotic form that had been 
treated with A-PPase (Fig. 4A). Antibody bind- 
ing was blocked by the DPl peptide, but not 
with an unphosphorylated peptide of the same 
sequence (DU1) or the other two phosphopep- 
tides (Fig. 4B). Thus, anti-DP1 appears to rec- 
ognize mitosis-specific phosphothreonine 
Thr1314 of XCAP-D2. Similarly, anti-DP2 and 
anti-DP3 recognized mitosis-specific phospho- 
threonines Thr1348 and respectively 
(Fig. 4, A and B). Immunodepletion of Cdc2 
from a mitotic extract resulted in a loss of the 
three phosphoepitopes from XCAP-D2, and in- 
cubation of the interphase form of XCAP-D2 
with purified Cdc2-cyclin B led to phosphoryl- 
ation of these epitopes (Fig. 4A). Thus, the 
three sites clustered in the COOH-terminal do- 
main are likely to be the physiological and 
direct targets of Cdc2. XCAP-D2 also acquired 
an MPM-2 epitope in a mitosis-specific and 

that was indistinguishable from the chromatin 
assembled in an interphase extract (Fig. 2B). 
When purified Cdc2-cyclin B (13) was add- 
ed back into the de~leted extract. the conden- 
sation activity was restored, accompanied by 
phosphorylation of the condensin subunits 
(Fig. 2A). The supercoiling activity of 13s 
condensin purified from the CdcZdepleted 
extract was reduced relative to that from the 
control extract (Fig. 2C). 

These results suggest that 13s condensin 

A"" 
I M ~ d ~ 2  

kD I 
B 

- I E. mli l calf tow I 

Fig. 3. Phosphorylation and activation of 135 condensin by Cdc2. (A) Phosphorylation of XCAP-D2 
and XCAP-H by CdcZ-cyclin B in vitro. 135 condensin was immunoprecipitated from 32P-labeled 
interphase (Lane 1) or mitotic (lane 2) extract (8). Alternatively, 135 condensin was purified from 
an interphase extract and then incubated with purified CdcZ-cyclin B in the presence of [y-32P]ATP 
(lane 3) (77). The labeled proteins were analyzed by autoradiography (top) or by immunoblotting 
with anti-XCAP-H (bottom). (B) Supercoiling assay of 135 condensin phosphorylated by Cdc2- 
cyclin 8. lnterphase 135 condensin was phosphorylated by Cdc2-cyclin B (lanes 3, 6, and 9) or 
treated with buffer alone (lanes 2, 5, and 8) (77). Supercoiling assay was done in the presence of 
no topoisomerase (lanes 1 to 3) or type I topoisomerases from E. coli (lanes 4 to 6) or calf thymus 
(lanes 7 to 9). (C) Phosphopeptide mapping of XCAP-D2 (upper panels) and XCAP-H (lower panels) 
labeled by purified CdcZ-cyclin B (left) or in mitotic extracts (center) as described in (A) (78). 
(Right) spots overlapping under the two conditions are indicated by filled circles, and those unique 
to mitotic extracts are indicated by open circles. 

peptide competitor 
no DP1 DU1 DP2 DU2 DP3 DU3 

HOEIMHMH 
EIMMOrnrnrn 
HmmmmOM 

~dc2-depend& k n n e r  WPM-2 is a mono- 
clonal antibody that recognizes mitosis-specific 
phosphoepitopes] (12, 20). 

These results provide evidence for a direct 
functional link between the master mitotic 
kinase, Cdc2, and the key machinery of chro- 
mosome condensation. The supercoiling ac- 
tivity of 13s condensin may be a physiolog- 
ically relevant activity that is essential for 
mitotic chromosome condensation. 

Mitotic Mitotic dcdc2 Interphase --- 
- &."" - - &P 

. .g. 4. Identification of cdcr phosphorylation sites in 
the COOH tail of XCAP-D2. (A) Recognition of mitosis- 
soecific ohosahothreonines of XCAP-D2 bv ohos- 
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Toxic epidermal necrolysis (TEN, Lyell's syndrome) is a severe adverse drug 
reaction in which keratinocytes die and large sections of epidermis separate 
from the dermis. Keratinocytes normally express the death receptor Fas (CD95); 
those from TEN patients were found to express lytically active Fas ligand (FasL). 
Antibodies present in pooled human intravenous immunoglobulins (IVIC) 
blocked Fas-mediated keratinocyte death in vitro. In a pilot study, 10 consec- 
utive individuals with clinically and histologically confirmed TEN were treated 
with IVIC; disease progression was rapidly reversed and the outcome was 
favorable in all cases. Thus, Fas-FasL interactions are directly involved in the 
epidermal necrolysis of TEN, and lVlC may be an effective treatment. 

Alterations in the control of apoptosis, a type of 
cell death, are illvolved in the pathogenesis of 
several human diseases (I, 2). Xpoptosis can be 
triggered by interaction between a cell-surface 
death receptor such as Fas and its respective 
ligand (Fas ligand: FasL or CD95L). 

TEN (or Lyell's syndrome) is a severe 
drug-induced skin disease in which apoptotic 
epidermal cell death results in the separation 
of large areas of skin at the dernlo-epidelmal 
junction (Fig. 1X). producing the appearance 
of scalded skin (3, 4). TEN occurs at an 
estimated incidence of 0.4 to 1.2 cases per 
million, most frequently as a result of sulfon- 
amide. anticon\ulsant, or nonsteroidal anti- 

inflammatory dnlg use, and is associated with 
a mortality rate of about 30% (3, 5) .  There is 
no knou~n effective treatment for TEN. Ker- 
atinocyte apoptosis is rare in the norrnal epi- 
dernlis, but is abnormally increased during 
TEN (3. 4). The mechanisn~s responsible for 
enhanced keratinocyte apoptosis in TEN re- 
main unclear (4). 

We screened serum sanlples from patients 
with clinically and histologically confinned 
TEN ( 6 ) ,  extensive drug-induced maculo- 
papular rash (MPR), and healthy controls for 
soluble FasL (sFasL) content (7, 8) .  Using a 
specific enzyme-linked immunosorbent assay 
(ELISA), we detected high concentrations of 
sFasL in the sera of patients with TEN. 
whereas sFasL was virtuallv undetected in 
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