
R E P O R T S  

Killer Whale Predation on Sea 
Otters Linking Oceanic and 

Nearshore Ecosystems 
1. A. Estes,* Me T. Tinker, T. M. Williams, D. F. Doak 

After nearly a century of recovery from overhunting, sea otter populations are 
in abrupt decline over large areas of western Alaska. Increased killer whale 
predation is the likely cause of these declines. Elevated sea urchin density and 
the consequent deforestation of kelp beds in the nearshore community dem- 
onstrate that the otter's keystone role has been reduced or eliminated. This 
chain of interactions was probably initiated by anthropogenic changes in the 
offshore oceanic ecosystem. 

Apex predators often initiate forces that cas- 
cade across successively lower trophic levels. 
sometimes reaching the base of the food n e b  
(1). Plant-herbivore interactions vary predict- 
ably with trophic complexity in such systems, 
being weak or strong when the number of 
trophic levels is odd or even, respectively (2). 
Sea otters (Ei~/lj,di.il 1ilti.i~) and kelp forests 
pro\ ide a ~vell-known example of this pattern 
(3). After being protected from overhu~lting. 
reco\,ering otter populatiolls transfoluied 
nearshore reefs ffom two- to three-tropllic- 
le\,el systems by li~niting the distribution and 
abullda~lce of herbivorous sea urchins, there- 
by promoting kelp forest development (4). 

Sea otters abou~lded across the North Pacif- 
ic rill1 until u~xegulated exploitation in the mar- 
itime fur trade reduced the species to near- 
extinction by the early 20th century (5). Popu- 
lation regronth began n~lle11 protection was af- 
forded under the I~lterllatiollal Fur Seal Treaty. 
A geogaphically discorda~lt recovely pattern 
ensued because of the fia,me~lted dishibutio~l 
of sun.i\ ing colonies, the discontinuous nature 
of their habitat. and the otter's limited dispersal 
ability (5; 6) .  Consequently, by the 1970s otter 
populations had recovered to near ~iiaxi~nuln 
densities in some areas of their historic range. 
were growing rapidly in others. and remained 
absent fiom still others (7 ) .  The sea otter's 
predatoly role in kelp forest ecosystems was 
disco\ ered by contrasti~lg inhabited wit11 unin- 
habited areas (8 )  and by ohsening changes 
over time as the uniidlabited areas were recol- 
onized and their founding populatiolls grew (4. 
9). In addition to showing the influence of sea 
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otters on Sort11 Pacific kelp forests, this ap- 
proach has demonstrated a breadth of indirect 
effects on coastal ecosystems (10). The sea 
otter's reputation as a keystone species (11) is 
based 011 these interactions and processes. 

Recently. sea otter populatio~ls ha\,e de- 
clined precipitously and ullexpectedly over 
large areas of western Alaska. We first detected 
this decline through population surveys at Adak 
Island in the central Aleutian archipelago; 
~vhich indicated that the otter populatioll de- 
creased -25Y6 per year through the 1990s, 
resulting in nearly an order-of-magnitude o \w-  
all reduction by 1997 (Fig. I). Additional sur- 
veys of Little Is lea .  Amchitka, and Kagalaska 
Islands all show populatio~l declines of similar 
timing and rate to that ~vhich occul~ed at Adalc 
(Fig. 1). Aelial sulTeys of the Aleutian archi- 
pelago collducted by the U.S. Fish and LVildlife 
Service i11 1965 and 1992 fullher indicate that 
these declines are occurri~lg tlxoughout the re- 
gio11 (12). The coIlcurrent and widespread na- 
h ~ r e  of these declines stro~lgly suggests a causal 
link with the oceanic envirolment. 

Demographic explallatiolls for the sea ot- 
ter populatio~l declines are limited to reduced 
fertility, increased mortality, or redistribu- 
tion. Of these. reduced fertility and redistri- 
bution can be excluded. Studies of radio- 
tagged sea otters at Amchitlia Island in 1992- 
94 and Adalc Island in 1995-96 show that 
birth rates of adult females and pup survival 
rates from birth to weaning were si~nilar to 
those of stable populations. Redistribution is 
equally unlilcely because the declines n7ere 
synchronous over large areas-there have 
been 110 populatio~l buildups on some islands 
to account for the losses on others-and ra- 
dio-tagged otters at Amchitka and Adak is- 
lands pro\,ided no iildicatio~l of redistribution 
duri~lg the declines (13).  From this we con- 
clude that the sea otter population declines 
were caused by increased mortality. 

Tluee lines of evidence point to increased 
predation by killer n~hales (0i.ciii~r.s oi.ccr) as the 

close proximity for decades. the first attaclc on a 
sea otter n7as seen in 199 1. Subsequently, nine 
more attaclcs ha\,e been reposted (14). We e\,al- 
uated the likelihood that this cluster of recent 
obsenations n7as due to chance alone by sum- 
ming the llu~llher of person-days spent in the 
Aleutian Islands by our research team before 
and after 1990 (3405 person-days before, 4005 
after), estl~nati~lg the attack rate fiom the post- 
1990 data (0.0015 attaclcs per day), and then 
calculating the probability of no attaclcs being 
seen before 1990 if the attacli rate reillailled 
constant over the 27-year period. By modeling 
the expected number of obselved attaclcs as a 
Poisson process. the probability of zero attaclcs 
being seen before 1990 is 0.006 (15). 

Second. we evaluated the impact of lciller 
\vhales on sea otter uouulations at Adalc Island 

A A 

by colltrastillg otter population trends and sur- 
vival rates bemeen Clam Lagoon, an area 
uniquely inaccessible to killer \vllales. and ad- 
jacent Kduk  Bay, an open coastal environment 
(Fig. 2). Sea otter ~ lu~nbers  were stable ffom 
1993 tluougll 1997 in Clam Lagoon. v,~hereas in 
Kuluk Bay they declined by 7696. I11 1995. we 
lnarlced 17 otters in Clam Lagoon and another 
37 in Kuluk Bay with flipper tags and surgically 
implanted radio transmitters in order to com- 
pare their behavior and demography. There was 
\,irtually no mo\,ement of the marked ani~nals 
bet~veen these areas. Howe\.er. tluougll year 1 
of the study, the disappearance rate of sea otters 
in Kululc Bay (65%) was greater than five times 
that of Clan1 Lagoon (129/0), a trend that con- 
tinued through year 2. 

Fi~lally, we estimated how Inany otters  nus st 
hale been eaten by killer ~vhales to drive the 
decline rates, and then compared the actual 
llu~nber of obserl ed attacks ~vltll the expected 
nulnber of observed attaclcs based on this esti- 
mate. This analysis n7as done for the area be- 
tween bslca and Segnam Islands. Before the 
onset of the decline, an estimated 52.656 otters 
inhabited this area (16).  Life table statistics 
(age-specific birth and death rates) were esti- 
~nated ffom data collected during earlier field 
shldies to collstl-tlct a Leslie matrix for a sta- 
tionary population. We then added an age-con- 
stant death rate ( I  7) fiom lciller bvllale predatio~l 
sufticie~lt to reduce the population by 78% over 
6 years-the obsened rate and magnitude of 
decline at Adalc. The siinulatioll was ~-un by 
llolding the number of individuals that died 
from lciller whale predation constant over time, 
which producecl a loss estimate of 6788 otters 
per year. The expected number of observed 
attaclcs produced by this approach is 5.05 for 
this 6-year period (IS). This compares favor- 
ably with the 6 attacks that were seen. 

Disease, toxins. and starvation. which are 
three other causes of ele\,ated mortality in 
wildlife populations, can he dismissed as 
causes of the populatio~l declines. Any one of 

whom correspondence should be addressed, E. reason for this mortality. First. although killer these should have produced substa~ltial num- 
mail: jestes@cats.ucsc.edu whales aild sea otters ha\,e been obsei~ed in bers of beach-cast carcasses. whereas \,cry 

www.sciencemag.org SCIENCE VOL 282 16 OCTOBER 1998 473 



R E P O R T S  

few were found. Marked increases in sea starvation, because sea urchins are the prin- 
urchin biomass during the population decline cipal prey of sea otters in the Aleutian Islands 
at Adak (Fig. 1) are further evidence against (19). Although we looked specifically for 

signs of disease, none were found (20). Ele- 
vated contaminant concentrations have been 
reported in the Aleutian Islands (24, but 
subsequent analyses from 39 sites across the 
Aleutian archipelago have shown that these 
are restricted to a few small areas (22), which 
is inconsistent with the widespread declines 
in otter numbers. 

The collective evidence thus leads us to 
conclude that increased killer whale preda- 
tion has caused the otter declines. Although 
the population size and status of killer whales 
in the Aleutian Islands are unknown, these 
animals are commonly seen. From the ener- 
getic requirements of free-ranging killer 
whales and the caloric value of sea otters, we 
estimate that a single killer whale would con- 
sume 1825 otters per year and thus that the 
otter population decline could have been 
caused by as few as 3.7 whales (23). 

Strikingly rapid changes in the kelp forest 

Sea urchin biomass I 

ecosystem have accompanied the sea otter 
population declines (Fig. 1). In 1987, when 
otters at Adak Island were near equilibrium 
density, the kelp forests were surveyed at 28 
randomly selected sites (4). Otters were still 
numerous at Adak in 1991, when five of these 
sites were randomly chosen for the measure- 
ment of plant tissue loss to herbivory (24). 
Using similar procedures at the same sites in 

Grazing intensity 

1997, we resurveyed the kelp forest and re- 
peated the measurements of plant tissue loss 
to herbivory. Over the 10-year interim, sea 
urchin size and densitv increased to vro- 
duce an eight-fold increase in biomass, 
while kelp density declined by more than a 
factor of 12 (Fig. 1). The average rate of 
kelp tissue loss to herbivory increased from 
1.1% per day in 1991 to 47.5% per day in 
1997 (Fig.1). Observations made in August 
of 1997 revealed similar changes at Kiska, 
Amchitka, and Kagalaska Islands. 

Killer whales and sea otters have co-inhab- 

Year 

Fig. 1. (A) Changes in sea otter abundance over time at several islands in the Aleutian archipelago 
and concurrent changes in (B) sea urchin biomass, (C) grazing intensity, and (D) kelp density 
measured from kelp forests at Adak Island. Error bars in (0) and (C) indicate 1 SE. The proposed 
mechanisms of change are portrayed in the marginal cartoons-the one on the left shows how the 
kelp forest ecosystem was organized before the sea otter's decline and the one on the right shows 
how this ecosystem changed with the addition of killer whales as an apex predator. Heavy arrows 
represent strong trophic interactions; light arrows represent weak interactions. 

ited the west-central Aleutian archipelago for 
much of the past half century, and probably for 
millennia before. Thus, it is necessary to ex- 

Fig. 2. Population trends and survival rates of 
sea otters in Clam Lagoon (solid squares) and 
adjacent Kuluk Bay (open circles), Adak Island, 
Alaska. (A) The rate of population change r, 
calculated as the slope of the linear best f i t  t o  
the natural log of the number of otters counted 
versus year, for Kuluk Bay between 1993 and 
1997 was -0.345 (SE = 0.058), which is signif- 
icantly different from 0 (R2 = 0.946, P = 
0.027). In Clam Lagoon, the rate of change over 
this same period was 0.006 (SE = 0.034), which 
is not significantly different from 0 [R2 = 0.01 1, 
P = 0.867; statistical power to  detect r 2 0.1 = 
0.91. The measured rates in Kuluk Bay and Clam 
Lagoon differed significantly (x2 = 27.26, 1 df, 
P < 0.001). (B) Survival rates of marked sea 
otters differed si nificantly between Clam La- F goon (0.88 year  ) and Kuluk Bay (0.35 year1; 
x2 = 13.52, 1 df, P < 0.001). 
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plain why the behavior of killer whales toward 
sea otters has recently changed. The most likely 
explanation is a shift in the prey resource base 
for killer whales. Some killer whale groups or 
individ~~als feed on maline mammals (25), in- 
cluding Steller sea lions and harbor seals, and 
populations of both these species recently have 
collapsed across the western North Pacific. Sea 
lion populations began to decline in the late 
1970s, and their numbers had reached mini- 
mum levels in the Aleutian islands by the late 
1980s (26) ,  a time that coincides with the onset 
of otter declines. Although the exact cause of 
the pinniped decline is uncertain (27), it prob- 
ably relates to reduced abundance and altered 
species composition of their prey (28). Recent 
population declines of piscivorous maline birds 
are consistent with this explanation (29). Why 
forage fish stocks have shifted is not well un- 
derstood, although the change was likely 
caused by some combination of effects from the 
region's burgeoning fisheries, increased ocean 
temperature, and depletion of baleen whales 
(30). 

Regardless of the ultimate cause, sea otter 
population declines and the consequent collapse 
of kelp forest ecosystems almost certainly have 
been driven by events in the offshore oceanic 
realm. Our proposed explanation involves a 
chain of ecological interactions, beginning with 
reduced or altered forage fish stocks in the 
oceanic environment, which in turn sent pin- 
niped populations into decline. Piwiped num- 
bers eventually became so reduced that some of 
the killer whales who once fed on them expand- 
ed their diet to include sea otters. This shift in 
killer whale foraging behavior created a linkage 
between oceanic and coastal ecosystems and in 
so doing transformed coastal kelp forests from 
three- to four-trophic-level systems, thereby re- 
leasing sea urchins fi.0111 the limiting influence 
of sea otter predation. Unregulated urchin pop- 
ulations increased rapidly and overgrazed the 
kelp forests, thus setting into motion a host of 
effects in the coastal ecosystem. 

Parts of this scenario are well documented, 
others are more speculative, and still others 
have yet to be evaluated. Nonetheless, the data 
are sufficient to make several points of broader 
ecological significance. First, our findings af- 
ford evidence of the often underappreciated 
importance that uncommon and transient spe- 
cies can have in controlling community struc- 
ture, demonstrating further that such species 
can link interactions across ecosystems. Al- 
though intersystem linkages are becoming in- 
creasingly well known ( S l ) ,  this exa~nple is 
unusual because the linkage is formed through 
the activities of a top-level carnivore. Addition- 
ally, our results are relevant to understanding 
food web dynamics, because they demonstrate 
that adding another apex predator to a system 
under top-down control has predictable effects 
on plant populations at the base of the food 
chain. Finally, results from this long-term study 

have implications for both the approach to and 
scale of other ecological field studies. The 
events reported here could not have been chron- 
icled or even detected in a short-term studv. 
were unanticipated, and thus seem poorly suited 
for analysis by a priori hypothesis testing. 
These points emphasize the potential signifi- 
cance of large-scale ecological events and the 
consequent need for large-scale approaches in 
ecological research. 
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Induction of Antigen-Specific 
Cytotoxic T Lymphocytes in 
Humans by a Malaria DNA 

Vaccine 
Ruobing Wang,* Denise 1. Doolan,* Thong P. Le;f 

Richard C. Hedstrom, Kevin M. Coonan, Yupin Charoenvit, 
Trevor R. Jones, Peter Hobart, Michal Margalith, Jennifer Ng, 

Walter R. Weiss, Martha Sedegah, Charles de Taisne, 
Jon A. Norman, Stephen 1. Hoffman: 

CD8+ cytotoxic T lymphocytes (CTLs) are critical for protection against intracel- 
lular pathogens but often have been difficult to induce by subunit vaccines in 
animals. DNA vaccines elicit protective CD8+ T cell responses. Malaria-naiie vol- 
unteers who were vaccinated with plasmid DNA encoding a malaria protein de- 
veloped antigen-specific, genetically restricted, CD8+ T cell-dependent CTLs. Re- 
sponses were directed against all 10 peptides tested and were restricted by six 
human lymphocyte antigen (HLA) class I alleles. This first demonstration in healthy 
naive humans of the induction of CD8+ CTLs by DNA vaccines, including CTLs that 
were restricted by multiple HLA alleles in the same individual, provides a foundation 
for further human testing of this potentially revolutionary vaccine technology. 

During 1990-1994, the administration of "na- 
ked" plasmid DNA encoding a specific protein 
antigen was shown to induce expression of the 
protein in mouse myocytes (I), to elicit anti- 
bodies against the protein (2), and to manifest 
protection against influenza (3) and malaria (4) 
that was dependent on CD8+ T cell responses 
against the expressed protein. Hundreds of pub- 
lications have now reported the efficacy of 

R. Wang, Malaria Program, Naval Medical Research 

DNA vaccines in small and large animal mod- - 
els of infectious diseases, cancer, and autoim- 
mune diseases (5).  

DNA vaccines elicit antibodies and CD4+ T 
cell responses in animals, but their major advan- 
tage at the immunological level has been their 
capacity to induce antigen-specific CDSi. T cell 
responses, includiilg CTLs, which is a major 
mechanism of protection against intracellular 
pathogens. Important to our method of develop- 
ing a malaria vaccine is the induction of CDSi. 
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mid DNA encoding the nefi ~ e v ,  or tat genes or 
the env and rev genes of HIV was reported (11). 
Interpreting the& results is difficult because of 
the concurrent HIV infection, which has been 
demonstrated to piime iildividuals for a CTL 
response that is independent of immunization. 

Accordingly, 20 healthy, malaria-nai've 
adults were recruited and randomized into four 
dosage groups of five individuals. Three ii~jec- 
tions of 20, 100, 500, or 2500 yg  of plasmid 
DNA encoding the P. falcipan~~n circumsporo- 
zoite protein (PfCSP) (12) were administered at 
4-week intei-vals in alteinate deltoids (13). The 
details of recruitment, safety, and tolerability 
were reported elsewhere (14). To assess CTL 
responses, we collected peripheral blood mono- 
iluclear cells (PBMCs) from each volunteer be- 
fore vaccination, 2 weeks after the second im- 
munization, and 2 and 6 weeks after the third 
iimnunization. These cells were either assayed 
while fresh for recall antigen-specific CTL re- 
sponses (15) or were frozen ( I  6) for subsequeilt 
study. In parallel, CTL assays were carried out 
with PBMCs from nonimmunized control vol- 
unteers. Cytolytic activity was assessed after 
both piimaiy and secondary in vitro restimula- 
tion against HLA-matched and HLA-mis- 
matched PfCSP-specific and coiltrol targets. 
The percent lysis and the percent specific lysis 
were determined as described (15). The most 
sensitive and specific method (1 7) for demon- 
strating the presence of CTLs was with effector 
cells that were expanded in vitro by exposure to 
cells infected with cailaiy pox (ALVAC) ex- 
pressing the PfCSP (18) and with target cells 
that were sensitized with PfCSP-deiived syil- 
thetic peptides (19). There was no apparent dif- 
ference behveen the primaiy and secondary as- 
says (20) or between the fresh and frozen spec- 
imens (21). 

For logistical reasons, fresh PBMCs were 
studied only before vaccination and after the 
second immunization in the 20- and 100-kg- 
dosage groups but were studied before vaccina- 
tion and after all iinillunizations in the 500- and 
2500-yg-dosage groups, with the exceptioil of 
one individual (13). For 14 individuals, ade- 
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