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estimate total CO, emission from European 
estuaries (Flg. 4), whrch appears to be a signif- 
icant percentage of the present a~lthropogenic 
CO, release to the atmosphere from Western 
Europe due to cornbustion [647 million tons of 
C in 1995 (la]. A minimum estimate, calcu- 
lated by applying an outer estuarine efflux of 
0.01 ~ n o l  m-' day-' to 80% of the total Euro- 
pean estuarine surface area, yields a total 
Eurovean ernission of 20 million tons of C 
per day, representing 3% of the present 
anthropogenic emission of CO, from West- 
ern Europe. It is likely that the percentage 
of surface area of inner estuaries is in the 
range of 25 to 50% and, fro111 data present- 
ed here, we estimate the actual value to be 
in the range of 30 to 60 million tons of C 
per day, which is 5 to 10% of the present 
European anthropogenic emiss io~~ .  This 
percentage has been obtained for a l~ighly 
industrialized area of the world; it may be 
higher for developing countries, where an- 
thropogenic CO, emissions are lower and 
where sig~lificant organic carbon load re- 
sults from overpopulation. 

Few data are available for other estuaries 
in the world, but the available data shows a 
high degree of supersaturation (1, 17-19), 
ranging frorn 500 to 6000 p t m .  Some data 
are also available for major rivers. The car- 
bon budget of the Amazon has been studied 
(20) and it was shown that this river emits 
0.17 to 0.52 mol m-' day-', vely similar to 
our flux data. Carbon dioxide levels have 
been measured in the Niger ( 2 4 ,  and the 
highest values reported were -6400 patm. 
again in agreement with values reported here. 
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A Short Circuit in Thermohaline 
Circulation: A Cause for 

Northern Hemisphere 
Glaciation? 

N. W. Driscoll and C. H. Haug 

The cause of Northern Hemisphere glaciation about 3 million years ago remains 
uncertain. Closing the Panamanian Isthmus increased thermohaline circulation 
and enhanced moisture supply to high latitudes, but the accompanying heat 
would have inhibited ice growth. One possible solution is that enhanced mois- 
ture transported to Eurasia also enhanced freshwater delivery to the Arctic via 
Siberian rivers. Freshwater input to the Arctic would facilitate sea ice formation, 
increase the albedo, and isolate the high heat capacity of the ocean from the 
atmosphere. It would also act as a negative feedback on the efficiency of the 
"conveyor belt" heat pump. 

Major ice sheet growth in Eurasia, Green- 
land, and North America is recorded by a 
6'" enrichment In benthic foramillifera 
between 3.1 and 2.5 millio~l years ago (Ma) 
(1, 2) and by the massive appearance of 
ice-rafted debris in northern high-latitude 
oceans since 2.7 Ma (3). An increase in the 
6'" value of benthic fora~llinifera predom- 
inantly reflects the growth of collti~le~ltal 
ice volume. The intensification of Northern 
Hemisphere glaciation (NHG) finalizes the 

N. W.  Driscoll, Woods Hole Oceanographic Institu- 
t ion, Woods Hole, MA 02543, USA. C. H. Haug, CEO- 
MAR, Forschungszentrum f i j r  Marine Ceowissen- 
schaften, Universitat Kiel, Wischhofstrasse 1-3, 
D-24148 Kiel, Germany. 

Cenozoic cooling trend, which started in 
the early Eocene and is marked by the first 
indications of ice sheets in Antarctica 36 
Ma (4). This long-term cooli~lg brought the 
climate system of Earth to a state critical 
for ice sheet buildup in the Northern Hemi- 
sphere. This has been the case since ap- 
proximately 11 Ma, when the first and mi- 
nor occurrence of ice-rafted debris in the 
Arctic and North Atlantic indicates the first 
attempts of the climate system to start a 
glaciation (5). However, the climate system 
failed to generate and mai~ltain major ice 
sheets in the Northern Hemispl~ere until 2.7 
Ma. Here we suggest that the closure of the 
Isthmus of Panama, which enhanced mois- 
ture transport to the Eurasian continent, 
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increased freshwater delivery to the Arctic 
and led to NHG (Fig. 1). 

The progressive closing of the Panamani- 
an isthmus in the late Miocene and early 
Pliocene has often been linked to the major 
intensification of NHG that occurred between 
3.2 and 2.7 Ma (6-10). The closure redirected 
Atlantic Ocean surface currents, enhanced 
the Gulf Stream, and thus transported warm 
saline surface waters to high northern lati- 
tudes. This in turn increased the formation of 
North Atlantic Deep Water (NADW) (8, 9). 
Increased evaporation at high latitudes would 
provide additional moisture, which is a sub- 
stantial requirement for ice sheet growth. 
This increased moisture supply led previous 
researchers to propose that the closing of the 
Panamanian isthmus caused NHG (6,IO, 11). 
However, the altered ocean circulation would 
also increase heat transport to the higher lat- 
itudes, as evidenced by a slight warming 
trend in the Northern Hemisphere at approx- 
imately 4.6 Ma (9). Enhanced Atlantic Ocean 
thermohaline circulation and the associated 
heat transport to high latitudes are thus seem- 
ingly at odds with the formation of large ice 
sheets in the Northern Hemisphere. 

New paleoceanographic records from 
the Caribbean Sea [Ocean Drilling Project 
(ODP) Site 9991 and from the Ceara Rise 
depth transect in the equatorial west Atlan- 
tic (ODP Sites 925 through 929) indicate 
that the closure began to have a major 
impact on intermediate and deep water cir- 
culation at 4.6 Ma (Fig. 2) (8, 9). Data from 
the Labrador Sea (ODP Leg 105) indicate 
that bottom water currents and drift sedi- 
mentation increased at -4.5 Ma (12). tim- . ,. 
ing that is consistent with the increase in 
the formation of Upper North Atlantic 
Deep Water (UNADW) and Labrador Sea 
Water, as suggested by General Circulation 
Model simulations (13). The formation of 
UNADW reached a first maximum at 3.6 
Ma and culminated during the early Plio- 
cene Northern Hemisphere warming (9). 
Records of deep water ventilation and car- 
bonate preservation in the north, equatorial 
east (ODP Sites 552, 659, and 665) (14, 
15), and west Atlantic (Ceara Rise depth 
transect, Sites 925 through 929) (8) below a 
water depth of 3000 m show that Lower 
North Atlantic Deep Water also increased 
at 4.6 Ma (9). 

The closing of the isthmus and the conse- 
quent redirection of Atlantic surface circula- 
tion increased moisture delivery to the Eur- 
asian continent via atmospheric transport by 
the westerlies. This change is recorded in drill 
cores recovered from Lake Baikal (16). Dia- 
tom abundances and assemblages, spore and 
pollen data, magnetic susceptibility, and sedi- 
mentological evidence indicate, as expected, 
that the climate was warmer in the early 
Pliocene and that Siberian humidity increased 

at -4.5 Ma (16). Because most of the drain- 
age across Siberia is to the Arctic, an increase 
in Eurasian moisture would enhance freshwa- 
ter delivery to the Arctic (Fig. 1). 

Today, the Yenisey, Lena, and Ob are the 
three largest Arctic rivers, respectively, in 
terms of annual water discharge (17). Be- 
cause of the immense size of the drainage 
basin (-7.2 X lo6 km2) (17) and discharge 
volumes (nearly 10% of global river dis- 
charge annually) of the major Siberian rivers 
they have likely had a marked effect on Arc- 
tic circulation and salinity, as well as modu- 
lating the East Greenland and West Spitzber- 
gen Currents (Fig. 1). These rivers of Siberia 
drain large regions of northern Tibet and the 
Tien Shan and Altai Mountains, which were 
high-standing regions before the Pliocene 
(18). The Verkhoyansk fold belt is a topo- 
graphic barrier that has focused river dis- 
charge toward the north into the Arctic Ocean 
since Cretaceous time (19). The enhanced 
moisture for the region must be sourced from 
the west because the high Himalayas pre- 
clude northward transport of moisture from 
the Indian monsoons, as evidenced by the 
Gobi Desert (Fig. 1). 

The Arctic Ocean has a surface layer of 
cold and relatively fresh water some tens of 
meters deep (20). The input of fresh water by 
fluvial systems can diminish the surface wa- 
ter salinity on the broad shelf regions by as 
much as 5 %O (20). The increased fresh water 
input to the Arctic would facilitate the forma- 
tion of sea ice. The formation of sea ice 
would markedly increase the surface albedo 
in the high latitudes and insulate the atmo- 

sphere from the high heat capacity of the 
ocean. Thus, when covered with sea ice, the 
Arctic Ocean has the climatic attributes of a 
landmass. It has been estimated that there is 
at least three times more atmospheric cooling 
with bipolar ice than there would be without 
it (21). 

This river input of fresh surface water from 
Siberia flows off and away from the shelf re- 
gion (for example, the Kara and Laptev 
Shelves) and joins with other surface flow from 
the western Arctic, forming the East Greenland 
Current (20). At some level of increased export 
of fresh Arctic water, it would affect the effi- 
ciency of the "conveyor belt" heat pump (22- 
24). Ocean circulation models indicate that the 
vigor of the ocean's thermohaline circulation is 
rather sensitive to even small inputs of fresh 
water (25). Even small salinity anomalies ap- 
pear sufficient to reduce deep water formation 
(26). In fact, the salinity anomaly observed in 
the northern Atlantic and the Nonvegian- 
Greenland seas in the 1970s (27) has been 
proposed as the potential cause for reduced 
Greenland Sea Deep Water formation during 
the 1980s (25). Modulating the efficiency of the 
conveyor belt heat pump would allow for cli- 
matic cooling. 

The Lake Baikal data suggest that there is 
little to no time lag between the closing of the 
isthmus and the enhanced moisture supply to 
the Eurasian continent via atmospheric trans- 
port by the westerlies (Fig. 1). The evident 
increase in the formation of NADW at -4.6 
Ma suggests that the closing of the Central 
American Seaway played a more dominant 
role and outcompeted for some time the neg- 

"Urn..'.. J 

outflow 

I 
Fig. 1. A simple schematic illustrating the ocean's thermohaline circulation in the North Atlantic 
(22) and the proposed short circuit of the system through freshening of the Arctic Ocean. Increased 
moisture delivery to the Eurasian continent via atmospheric transport by the westerlies is shown 
by the yellow arrow. The consequent freshwater input from the Siberian rivers to the Arctic Ocean 
(orange arrow) decreases surface salinity, facilitates sea ice formation, and freshens the Arctic 
outflow into the North Atlantic. The fresh water diminishes the production of NADW and thus 
short-circuits the thermohaline circulation. 
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ative feedbacks associated with freshwater sphere. High-amplitude fluctuations in the tween 3.1 to 2.5 Ma was the final pertur- 
bation that tipped the scales and led to the 
initiation of NHG (9). 

export from the Arctic. We suggest, however, obliquity set the stage to strengthen the 
that freshening of the North Atlantic began to glacial-interglacial 41,000-year cycles dur- 
modulate the strength of the thermohaline ing the late Pliocene and early Pleistocene 
circulation and thus placed an upper limit on (28). A pronounced long-term minimum in 
the amount of heat transported to high lati- obliquity amplitude fluctuations occurred 
tudes. Likewise, if the supply of fresh water between 4.5 and 3.1 Ma (28) (Fig. 2). The 
exported from the Arctic decreased, then con- 6"O records of ODP Sites 659 (2), 846 
tinued evaporation in the Atlantic would have (29), and 999 ( 9 )  show that during this 
further invigorated the conveyor belt circula- unfavorable orbital configuration there may 
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