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Fig. 5. Analyses of f^ p 
plastid protein import 
in the ppil mutant 
(A) In-organelle analy
sis of protein import 
into wild-type and 
mutant plastids isolat
ed from 10-day-old 
plants. The import of 
four different protein 
precursors was inves- im -^ • 
tigated: RBCS, PORA, 
PORB, and CAB. Chloroplasts were repurified after the import reactions, and equal numbers of 
chloroplasts were loaded in each lane (73). (B) In vivo immunoblot analysis of POR protein in 
5-day-old etiolated wild-type and mutant plants. Precursor proteins are indicated with open 
triangles; mature proteins are indicated with solid circles. 

pendently, provide the simplest means of 
achieving the necessary pattern of expres
sion. The fact that the translocation effi
ciencies of some preproteins vary between 
different plastid types suggests that the im
port machinery possesses a certain degree 
of specificity {18). Although our transgenic 
data indicate functional similarity between 
the two proteins (Fig. 2C), it is possible 
that, under normal conditions, subtle func
tional differences exist. 
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(HBV) (4), analysis of viral dynamics during 
antiviral therapy has been helpful in under
standing pathogenesis and in guiding therapy. 
The kinetics of HCV during IFN therapy has 
been described recently (5-7), but the underly
ing viral dynamics and the effect of IFN are not 
yet well understood. 

In a preliminary study (6\ we observed a 
dose-dependent acute HCV RNA decline in 
serum over a 1-day period after a single injec-
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To better understand the dynamics of hepatitis C virus and the antiviral effect 
of interferon-a-2b (IFN), viral decline in 23 patients during therapy was ana
lyzed with a mathematical model. The analysis indicates that the major initial 
effect of IFN is to block virion production or release, with blocking efficacies 
of 81, 95, and 96% for daily doses of 5,10, and 15 million international units, 
respectively. The estimated virion half-life (t1/2) was, on average, 2.7 hours, with 
pretreatment production and clearance of 1012 virions per day. The estimated 
infected cell death rate exhibited large interpatient variation (corresponding 
t1 / 2 = 1.7 to 70 days), was inversely correlated with baseline viral load, and was 
positively correlated with alanine aminotransferase levels. Fast death rates 
were predictive of virus being undetectable by polymerase chain reaction at 3 
months. These findings show that infection with hepatitis C virus is highly 
dynamic and that early monitoring of viral load can help guide therapy. 
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tion of IFK. However. because of tlie limited 
frequency and duration of sampling. we were 
able to obtain only a miniiiial estimate of the 
free virion clearance rate and the steady-state 
HCV production rate. Nevertheless, n-e hypotli- 
esized that IFN acts by blocking the prod~lction 
or release of virions (6) rather than by blockiiig 
de 11ovo infection ( 5 ) .  In tliis shldy. inatliemat- 
ical analysis is coupled with very fkequent sam- 
pling of serilrn HC\' RNA duling 14 days of 
heaniient with higher daily doses of IFN. Tliis 
shidy not only coi-roborates our previous liy- 
pothesis. but it allows us to estimate tlie abso- 
lute efficacy of IFN therapy-that is, tlie per- 
centage of HCV production blocked by differ- 
ent doses of 1FK. Furtherniore, we now esti- 
Inate the infected cell death rate, an iinpo~Tant 
parameter for uiidersta~iding HCV pathogenesis 
and, as we show. response to therapy. All to- 
gether tlie analysis gives a complete uiider- 
standing of HCV dyna~nics and IFN effect. 

Twenty-three patients infected with HCV 
genotype 1 ( 8 ) ,  who were not pre\~iously treated 
for HCV. were included in the study (9). The 
patients were randomly assigned one of three 
dose regimens: daily subcutaneous injections of 
5. 10. or 15 lnillion intelnational units (mTU) of 
IFN-a-2b (Intron. Scliering-Plough, Ken- 
ilworth, New Jersey) for 14 days. after which 
all received 5 1ii1U daily (10). Blood samples 
were collected every few hours during the first 
2 days and daily for 2 weeks (11). Tlie baseline 
viral load (12) (measured 7 and 14 days before 
treatnient) was on average (2 SD) 1 1 X 1 O6 t 
18 X lo6 HCV RVA copies per milliliter and 
was not significantly different among tlie dif- 
ferent regimens. 

After initiation of therapy. all patients ex- 
hibited a delay. on average 8.7 t 2.3 hours, 
d~lring which the viral load remained approxi- 
mately at baseline (Fig. 1.4). Thereafter. senun 
viral load rapidly declined (first phase), with 
ax7erage exponeiitial decay slopes of 3.0 5 0.7, 
6.1 t 2.5. aiid 5.0 i 0.5 daysp1 for tlie 5-, lo-, 
and 15-nlIU dose regimens, respectively. After 
24 to 48 hours of treatment. the viral decline 
slowed with a relative stabilization at values 
25% i 9%, 5% i 5%, aiid 5% i 5% of 
baseline for the 5-, lo-, and 15-rnIL dose reg- 
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irnens, respectively (Fig 1A). The slopes aiid 
fraction of vii-tls remaining at day 2 were sig- 
nificantly different betsveen the 5-mIU regimen 
and tlie m o  other regimens (P < 0.03) (13). but 
there was no sigiificant difference behveen tlie 
10- and 15-mLT regimens. A slower (second 
phase) viral decline occm-red between 2 and 14 
days of treannent (Fig. lB), witli exponential 
decay slopes of 0.11 ? 0.14. 0.16 +- 0.23, and 
0.28 +- 0.23 dall-' for the 5-. lo-, and 15-mILT 
dose regiinens. respectively. with no statistical- 
ly significant difference behveen regimens (P 
> 0.15). Tlie rapid first phase slope was not 
correlated witli baseline viral load or baseline 
alanine a~ninotransferase (ALT) level. 
However, the slo\ver second phase slope 
was found to be inversely correlated with 
baseline viral load (R = -0.6, P = 0.006) 
and positively correlated \vitli baseline 
ALT level (R = 0.6. P = 0.004). 

Why does HCV decline so rapidly tlie first 
day of treatiiient and then at a significantly 
slower rate? Why does the initial rate of 
decline depend on tlie IFK dose? To shidy 
these questions, we use a standard niodel of 

viral infection (3, 4, 6). described by the 
differential eq~~at ions  

where T is tlie number of target cells. I is the 
number of productively infected cells, and V 
is tlie viral load. Target cells are produced at 
rate A (14) and die with death rate constant d 
Cells become infected with de novo infection 
rate constant p and, once infected, die with 
rate constant 6. Hepatitis C virions are pro- 
duced by infected cells at an average rate o f p  
\~irioiis per cell per day and are cleared \vitli 
clearance rate constant c .  The possible effects 
of 1FN in tliis inodel are to reduce either the 
production of virions from infected cells by a 
fraction (1 - E) or the de novo rate of 
infection by a fraction (1 - T). Before IFN 
therapy, E = = 0. Once therapy is initiated, 
E > 0 or q > 0 or both. The possible effect 
of an iiii~nuiie response is not explicitly de- 
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Fig. 1. HCV kinetics during the first 2 days (A) and the first 1 4  days (B) of  IFN therapy for three 
representative patients receiving three different daily doses: 5 m l U  (first row), 10 m l U  (second 
row), and 15 mlU (third row). A biphasic viral decline can be observed. The first-phase slope is 
mainly determined by the free virion clearance rate and therapy efficacy. The second-phase slope 
is determined by the infected cell death rate and the efficacy and has large interpatient variation. 
The rat io between the viral load at day 2 and at day 0 gives a good estimate o f  the antiviral 
efficacy. O n  average, the slope is faster and the decrease is larger for the t w o  higher doses (see 
Table 1). Solid lines in (A) are the best f i t  of the  rnodel t o  the viral load data (circles) assuming a 
constant level of infected cells (Eq. 4). Solid lines in  (B) and dot ted lines in (A) show the  best f i t  w i t h  
the fu l l  solution of the  rnodel (Eq. 5). Parameter values used are given in Table 1. 

104 2 OCTOBER 1998 VOL 282 SCIENCE www.sciencemag.org 



scribed in this rnodel but rather is included in 
the rate constants c and 6. 

If 1FK acts solely by blocking new HCV 
infections (T > 0, E = O), as postulated by 
others ( 5 ) ,  or by increasing the death rate of 
infected cells. then HCV clearance and pro- 
duction would both continue at their pretreat- 
ment rate until infected cells start dying, 
whicli implies a slow first-phase decline (6) 
(Fig. 2A) and not one that is 10-fold more 
rapid than o b s e ~ ~ e d  during potent antiretro- 
viral therapy for HIV (3). Moreo\~er. blocking 
de novo infection \vould not account (Fig. 
2A) for the strong dose dependence observed 
during the first day of therapy and for the 
slower decline after 2 days (Fig. 1).  

If the major effect of IFK treatment is to 
block tlie production or release of virions by 
infected cells (E > 0) in a dose-dependent 
manner, then upon initiation of IFK therapy a 
rapid. dose-dependent decline of HCV is ex- 
pected (Fig. 2B). Further. if bloclcing is not 
perfect (E < l ) ,  then according to our model 
the viral decline will be bipliasic, with tlie 
initial slope of the first phase governed by the 
clearance rate of free virions c and by effica- 
cy E The subsequent second-phase decline is 
predicted to reflect the death rate of produc- 
tively infected cells as well as the efficacy. 
The correlation of tlie baseline ALT level 
with the second-phase slope. but not with the 
first-phase slope, supports this model to the 
extent that ALT levels are an indication of the 
amount of hepatocyte death. 

Another ~iiode of action of IFN could be 
to increase the rate of virion clearance. per- 
haps by sti~nulating phagocytic cells. How- 
ever, according to this hypothesis (15) tlie 
predicted pretreatment free virion half-life 
would vary from 0.7 day at the lowest dose to 
14.3 days at tlie highest dose. Because tlie 

clearance rate before treahiielent should be the 
same for the tlu-ee dosages. we conclude that 
this hypothesis is not likely. IFN is known to 
have multiple effects, such as stimulating the 
immune system: therefore. some meclianisms 
of IFN action could have minor effects or be- 
come more important as treatment continues. 

Based on the hypothesis that the rnajor ef- 
fect of IFN is to block viral production or 
release, we set T = 0 in the model and refer to 

E as tlie antiviral efficacy. We assume that both 
the viral load and the number of infected cells 
are in quasi-steady state (16) before therapy is 
initiated, with baseline at Ifcl and I,,, respective- 
ly. This assu~iiption is supported by the fact that 
the maximum variation in viral load is only 
3.3-fold over periods of ~iionths in untreated 
patients (17) and du~ing pretreatment in our 
patients. If productively infected cells live 
much longer than 2 days, we can assume their 
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Fig. 3, Infected cell death rate (6) 
is positively correlated w i th  
baseline ALT levels (A) and in- 
versely correlated w i th  init ial  vi- 
ral load (B). This implies that  in- 
fected cell half-life [t,!, = In(2) l  
61 is longer for patlents w i th  
higher init ial  viral loads and low- 
er ALT levels. Patients who  have 
undetectable HCV by PCR after 3 
months o f  therapy (filled sym- 
bols) had significantly (P < 0.01) 
faster death rates (6 = 0.22 i 
0.12 day-') than those who 
have detectable virus (6 = 
0.05 _f 0.05 day-,, empty sym- 
bols). Four patients who did no t  
respond t o  IFN therapy (NR) and 
three patients who  had viral re- 
bound (RB) have initially high HCV 
and low ALT levels. 
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Fig. 2. Predicted de- A , 
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the  f lrst 2 days However, even In thls case, blocklng lnfectlon does p = 3 X (vlr lon per m ~ l l l l l t e r ) - '  per day bu t  a large range o f  
no t  explaln the  st rong dose dependence observed dur lng t h e  f lrst 2 parameter values could be used w l thou t  changlng these results 



number remains relatively constant during the 
first 2 days of therapy-that is, I(t) = I,. The 
solution of Eq. 3 for the viral kinetics in the first 
2 days of therapy is then 

V(t) = V O [ l - & + ~  exp(-c(t - r,))] t >  to 
(4) 

where we assume that viral decay begins at 
time to, corresponding to the delay observed 
in the data and possibly reflecting IFN phar- 
macokinetics. This solution, which has also 
been derived for lamivudine therapy of HBV 

liver transplantation (19). Interestingly, we 
found that c was not correlated with the IFN 
dose. The dependence of the first-phase decline 
slope on IFN dose is due to efficacy F, which 
exhibited a strong dose dependency, with F = 
0.81 i 0.06, F = 0.95 i 0.04, and& = 0.96 t 
0.04 for the 5-, lo-, and 15-mIU regimens, 
respectively. The efficacy of the 5-1dU dose is 
significantly (P < 0.01) smaller than those of 
the 10- and 15-mIU doses, which are compara- 
ble. On average, the fraction of serum virus 
remaining after 2 days of treatment is in agee- 

it is reasonable to assume that T remains at 
its baseline value for the 2 weeks of ther- 
apy. Again assuming a pretreatment steady 
state, the full solution of Eqs 2 and 3, with 
T constant, is 

V(t) = V,{A exp[-h,(t - to)] + 
(1 - A) exp[-i,(r - to111 t > to (5) 

where 

h 1 2  = 1/2{(c + 6) i [(c - 6)' 

+ 4(1 - E ) c ~ ] ' ~ )  
(4), has the properties that the initial expo- ment with that predicted by the model (1 - 8). 

nential decay slope is c& and that V(r) ap- For baseline viral load to be relatively con- A = (EC - h2)/(hl - h2) 

proaches the constant value (1 - F)V, after stant before treatment, the extracellular viral Next we substituted in Eq. 5 the parameters 
time t >> lie. Hence, if IFN is 100% effica- production rate must equal the viral clearance V,, t,, c, and F, already obtained for each 
cious, our theory predicts that the viral load rate (3). Thus, we estimated the production rate patient, and used nonlinear least-squares fit- 
will continually decline. However, if & < 1, in each patient by the product cV, times a factor ting (18) of the viral load data from days 0 to 
then the viral load is predicted to stabilize at equal to the extracellular fluid volume (Table 1) 14 (Fig. 1B) to estimate 6 (Table 1) for each 
a fraction (1 - 8) of the baseline. and found an average virion production rate of patient (24). The productively infected cell 

Using nonlinear regression analysis (18), we 1.3 X 10" virions per day (20). The fitted delay death rate was, on average, 6 = 0.14 i 0.13 
fit the viral-load kinetics from days 0 to 2 of t, was, on average, 8.7 5 2.3 hours, consistent day-', with a large interpatient variation 
therapy to Eq. 4 and estimated the parameters with direct phalmacokinetic sh~dies (24,  and ranging from 0 (or <0.01, the possible error 
V,, to, c, and F for each patient (Fig. lA, Table was independent of the IFN dose or baseline in fit) to 0.4 day-', corresponding to half- 
1). The virion clearance rate was, on average, viral load (22). lives from longer than 70 to 1.7 days. 
c = 6.2 i 1.8 daysp', corresponding to an Over periods longer than a few days, the The considerable variation in productively 
average half-life oft,!, = 2.7 hours (range, 1.5 death of infected cells cannot be neglected as in infected cell half-life could reflect the observed 
to 4.6 hours) for free serum virions. This agrees our approximatiorl above. However, uninfected differences in cellular i~nrnunity against HCV 
with a previous study on HCV kinetics after hepatocytes turn over slowly (23) and thus (25), assuming that the killing of infected cells 

Table 1. Fitting results. Initial viral load (VL), delay (t,), free virion clearance rate rate by  ini t ia l  viral load and normalizing for extracellular fluid volume (20). 
constant (c), and therapy efficacy (E) were estimated (78) from data obtained NR, nonresponder w i t h  maximal HCV decrease o f  <33% and return t o  
between day 0 and day 2 of therapy using Eq. 4, and then the infected cell death baseline wi th in  1 4  days; RB, rebounder, viral load decreased a t  least 1 order 
rate constant (6) was estimated from data obtained between days 0 and 1 4  of of magnitude but  rebounded after day 2 t o  w i th in  10% of  baseline; ND, no 
therapy using Eq. 5. Total production was calculated by multiplying the clearance data beyond day 4, so 6 could no t  be calculated. 

Vir ion clearance (c) Efficacy (E) 
Infected cell death 

Ini t ia l  VL 
(6) 

Production 
Delay 

Regimen Patient ( l o 6  copies 
(hours) 

( l o 9  copies 
per mill i l i ter) 

( l l day )  2 error Percent 2 error ( l l day )  2 error per day) 

1 A 
1 B 
1 C 
1 D 
1 E 
1 F 
1 G 
1 H 

1: Mean +SD 

2 A 
2 B 
2 C 
2 D 
2 E 
2 F 
2 G 
2 H 

2: Mean 2 S D  

3 A 
3 B 
3 C 
3 D 
3 E 
3 F 
3 G 

3: Mean 2 S D  

All: Mean 2 S D  
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by cytotoxic T lymphocytes (CTLs) is a major 
contributor to the death rate of infected cells. 
The reported correlation between baseline ALT 
and anti-HCV CTL frequency (25) could ex- 
plain the correlation (R = 0.6, P = 0.01) we 
found behveen baseline ALT and the death rate 
of infected cells (Fig. 3A). In addition, we 
observed, in agreement with the pretreatment 
steady-state solution of our model (16), that the 
death rate of infected cells 8 is inversely corre- 
lated (R = -0.9; P < 0.001) with the initial 
viral load (Fig. 3B). A similar inverse correla- 
tion was found between anti-HCV CTL fre- 
auencv and baseline viral load in some studies 
A .  

(25), but not all (26). These correlations sug- 
gest that immune control tl~rough faster killing 
of infected cells may have an important role in 
lowering HCV load. There is some trend show- 
ing faster infected cell death rates in patients 
receiving high IFN doses (Fig. 3), possibly due 
to IFN enhancement of the inunune response, 
but these differences are not significant. 

Estimates of the infected cell half-life (t,,, 
= In 218) are important when the possibility of 
sustained clearance is being considered, be- 
cause the virus cannot be eliminated until all 
infected cells die. Interestingly, we find that the 
infected cell death rate 6 estimated during the 
first 2 weeks of therapy was correlated with the 
viral status of patients at 3 months (Fig. 3). 
Accordingly, none of the five patients with 6 5 

0.1 dayp' had undetectable viral load [< 100 
RNA copies per milliliter per reverse transcrip- 
tase-polymerase chain reaction (RT-PCR)] af- 
ter 3 months of therapy, and seven of nine 
patients who had 6 > 0.1 dayp' were undetect- 
able at 3 months (P = 0.005, x2 test). This 
suggests that success with IFN therapy could be 
predicted fro111 the early dynamics and that, if 
high values of 6 reflect a strong pretreatment 
cellular immune response against HCV, CTL 
responses may be needed for successfU1 IFN 
therapy (27). 

The rate of HCV production found here is 
larger than the current estimates for viral 
production in HIV-infected individuals (3). 
The large viral production rate clarifies why 
HCV appears as a quasi-species as diverse as 
HIV (28) and implies that mutations that 
make the virus more fit under treatment could 
be rapidly produced. Indeed, it was found 
(29) that failure of IFN treatment is associat- 
ed with large quasi-species diversity and high 
viral load, si~nilar to the trend we found here 
(Fig. 3). Thus, as for HIV, initially treating 
HCV aggressively should be considered as a 
means of increasing the success of therapy. 

Our results indicate that IFN doses of 10 and 

2 days of therapy, as well as the rate of the 
second-phase decline on the long-term success 
of treatment. Uncovering the rapid dynamics of 
HCV has implications for the possible emer- 
gence of viral resistance to new therapeutic 
agents, such as the protease inhibitors for HCV 
that are currently being designed (30), for as- 
sessing the possibility of viral eradication and 
for managing patient treatment 
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