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Synchronous Climate Changes 
in Antarctica and the 

North Atlantic 
E. J. Steig,*f- E. J. Brook, J. W. C. White, C. M. Sucher, 

M. L. Bender, S. J. Lehman, D. L. Morse, E. D. Waddington, 
G. D. Clow 

Central Greenland ice cores provide evidence of abrupt changes in climate over 
the past 100,000 years. Many of these changes have also been identified in 
sedimentary and geochemical signatures in deep-sea sediment cores from the 
North Atlantic, confirming the link between millennial-scale climate variability 
and ocean thermohaline circulation. It is shown here that two of the most 
prominent North Atlantic events-the rapid warming that marks the end of the 
last glacial period and the B0llinglAllercad-Younger Dryas oscillation-are also 
recorded in an ice core from Taylor Dome, in the western Ross Sea sector of 
Antarctica. This result contrasts with evidence from ice cores in other regions 
of Antarctica, which show an asynchronous response between the Northern and 
Southern Hemispheres. 

Objective col-selation of isotope paleotem- the Antarctic Cold Reversal (ACR), a period 
perahre records from polar ice cores has of cooling that appears in many Antarctic 
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conclusions regarding the timing of rapid cli- 
mate change events. Here we present a new 
stable isotope (SD) record (Fig. 2) and a new 
chronology for the last glacial-interglacial 
transition in the Taylor Dome core. We use 
both atmospheric methane (CH,) and the iso- 
topic ratio of molecular oxygen (S180,t,,,) to 
tie Taylor Dome to the layer-counted chro- 
nology of the Greenland Ice Sheet Project 2 
(GISP2) (Summit, Greenland) ice core (7). 
This approach requires calculation of the age 
difference (Aage) between the ice and the 
younger gas it encloses. For GISP2: we use 
the gas-age time scale and Aage values of 
Brook et al. (8) .  For Taylor Dome, we obtain 
a gas chronology by visually matching 
changes in CH, and SIXO,,, concentrations 
with those at GISP2 (Fig. 3). The rapid in- 
creases in CH, before and after the YD pro- 
vide precise correlation points at 14.6 and 
11.6 thousand years before the present (kyr 
B.P.) (9). The precision of the correlation 
between 20 and 15 kyr B.P., during which 
both CH, and S180,tm change relatively 
slowly, is between 500 and 1500 years. 

We calculate Aage for Taylor Dome as a 
f~~nct ion of the effective bubble close-off 
depth (COD), surface temperahre (T) and 
accumulation rate (b), using the empirical 
Herron-Langway model to describe the fiin 
densification process (10). We assume that 
the COD occurs at a density p,,, = 800 i 
10 kg mP3. as determined from nitrogen iso- 
tope (S15N) measurements in firn air (11). 
Measured S15N in Taylor Dome ice samples 
independently constrains Aage by giving a 
measure of the thickness of the diffusive zone 
through which gravitational fractionation is 
manifested. Diff~~sive layer thicknesses cal- 
culated from measured S15N provide a mini- 
mum estimate of the COD and therefore of 
Aage for given T and b (12). 

Values for T and b are taken as averages 
over an interval approximating the original 
thickness of the fiin column (13). We assume 
that T is a linear function of SD, where the 
slope a = 4.0 -C 1.5%0 "C-' (14). We cal- 
culate 6 from the ''Be concentration (Fig. 2), 
where we assume that the dry deposition flux 
is constant and include a term for wet depo- 
sition (15). The "Be method is supported by 
several obsenrations. First, "Be concentra- 
tion and 6 show a strong spatial inverse cor- 
relation both locally at Taylor Dome and 
broadly across the Antarctic continent (16). 
Second, both empirical and theoretical con- 
sideratioils indicate that the dry deposition 
flux of ''Be at polar latitudes varied little 
over the last glacial cycle, for averages over 
time intervals greater than a few decades 
(17). Third, comparison of ''Be with major 
ion concentrations in the Taylor Dome core 
shows a high degree of correlation; variation 
in accumulation rate produces strong covari- 
ance among chemical species, including ''Be 

and sulfate, which have very different source 
functions (18). Finally, flow model calcula- 
tions, based on high-resolution radar profiles 
and vertical and surface velocity data, pro- 
vide independent validation of "Be-based 
estimates of accumulation rates (19). For 
comparison. we also determine b using cal- 
culated values for T (from measured SD) by 
assuming that 6 varies as a linear function of 
the saturation vapor pressure of water over 
ice (20). 'This more commonly used ap- 
proach, although probably valid for continen- 
tal sites such as Vostok, is difficult to justify 
at Taylor Dome, where precipitation is 
strongly influenced by cyclonic activity (21); 
relative to the "Be method, it generally over- 
estimates accumulation rates (and therefore 
underestimates Aage) during cold periods. 
Values of Aage calculated by the different 
methods vary by up to 2750  years (Fig. 3). 
The variance in Aage is greatest in the oldest 
part of the record (20 to 15 kyr B.P.) but is 
<300 years during the crucial YD time peri- 
od and early Holocene and <600 years at 
14.6 kyr B.P., at the time of the rapid degla- 
cia1 warming in the Northeln Hemisphere. 

We obtain a time scale for Taylor Dome 
by adding Aage to the gas ages from corre- 
lation with GISP2, using the maximum of the 
estimates shown in Fig. 3. As will become 
apparent. this approach is the most conserva- 
tive for comparing Taylor Dome with other 
ice core records, because it gives the oldest 
age for a given depth. We estimate the pre- 
cision of this time scale by propagating un- 
certainties in p ,,,, T. and b (11, 14, 15) and 
adding estimated uncertainties arising from 
the GISP2 age calculation and the curve- 
matching technique (22). The resulting SD 
time series, from 20 to 10 kyr B.P., is com- 
pared in Fig. 4 with SD at GISP2. Also shown 
are S180 at Byrd and SD at Vostok, both on 
the Sowers and Bender (3) time scales tied to 
GISP2 through S180,tm. For Byrd, where un- 
certainties in Aage are small: the time scales 
of both Sowers and Bender (3) and Blunier et 
al. (4) are in excellent agreement. For Vos- 

Atlantic Ocean 

ANTARCTICA 

South Pole 

Pacific Ocean 

Fig. 1. Map of Antarctica showing Locations of 
Antarctic ice cores. 

tok, uncertainties in Aage are considerably 
larger; ages from (3) are up to 1200 years 
greater than those from (4) over the interval 
from 20 to 10 kyr B.P. 

Figure 4 illustrates three particularly im- 
portant findings. First. prominent feah~res of 
the GISP2 record that are absent at Byrd and 
Vostok appear at Taylor Dome, including 

I 
0 100 200 300 400 

Depth (m) 

Fig. 2. SD and ''Be concentrations in  the Taylor 
Dome ice core f rom 0 t o  400 m depth ( tota l  
depth = 554 m), covering the Holocene and 
last glacial-interglacial transition. 

I '  
10 12 14 16 18 2C 

Age (kyr BP) 

Fig. 3. (A) CH, (O), S180,t, ( O ) ,  and S15N (0) 
f rom trapped air bubbles in  the Taylor Dome 
and GlSP2 (+ and x), cores. (B) Lines show 
hage calculated using b f rom 1°Be (solid line) 
and SD (dashed line). Diamonds (+) show min- 
imum ''Be hage constrained by S15N, assum- 
ing a 10-m-thick advective Layer at the top  of 
the f irn column. 

!ncemag.org SCIENCE VOL 282 2 OCTOBER 1998 93 



R E P O R T S  

generally declining isotope values between 
20 and 15 kyr B.P. and near-Holocene iso- 
tope values during the BollingIAllerod (BIA) 
waim period (14.6 to 12.9 kyr B.P.). Second, 
the late-glacial cold interval (low SD values) 
at Taylor Dome; although more subdued than 
at GISP2, is at least approximately contem- 
poraneous with the Northern Hemisphere YD 
and definitely lags the ACR. This interval 
ends with a rapid wanniilg that is synchro- 
nous with post-YD warming at GISP2 within 
a few hundred years. Third, the dramatic 
warming that marks the end of the last glacial 
maximum at Taylor Dome lags the onset of 
gradual warming at Vostok and Byrd by more 
than 3000 years. In the latter cores, deglacial 
warming begins before 18 kyr B.P. and con- 
tinues uninterrupted until the ACR cooling. 
At GISP2 there is evidence for an initiation of 
warming as early as 24 kyr B.P.; but isotope 
values generally indicate cold conditions un- 
til nearly 14.6 kyr B.P., when rapid deglacial 
warning occurred. At Taylor Dome, the 
magnitude of the SD increase during degla- 
cia1 warming is as large as at GISP2. Uncer- 
tainties in both time scales over this interval 
are considerably larger than for the BIA and 
YD, but the precision is sufficient to con- 
clude that deglacial wai~ning was synchro- 
nous in both cores within 1000 years. 

Evidently, climate changes at Taylor 

Dome during the last glacial-interglacial tran- 
sition were synchronous or near synchronous 
with changes in the North Atlantic region. 
This result has important implications for our 
understanding of the mechanisms linking cli- 
mate between the hemispheres. It is generally 
accepted that abrupt deglacial waiming in the 
Northern Hemisphere was accompanied by 
the onset of North Atlantic deep water 
(NADW) formation; promoting northward 
flow of waim surface waters from the tropics; 
whereas a circulation pattern marked by re- 
duced NADW formation accounts for cold 
conditions during the YD interval (23). The 
Byrd and Vostok records, showing an an- 
tiphase relationship between Antarctica and 
Greenland, have drawn attention to numerical 
model results in which changes in NADW 
promote opposing temperature responses in 
the high latitudes of the Noithern and South- 
em Hemispheres, a consequence of an alter- 
nation in the amount of convection or ocean 
heat convergence (or both) in the two areas 
(24). The Taylor Dome results, on the other 
hand, are consistent with earlier arguments 
that the flow of relatively warm NADW into 
the Southern Ocean warms circumpolar deep 
water (CPDW), thereby promoting sea ice 
melting and atmospheric warming as CPDW 
upwells along the Antarctic coastal margin 
(25) .  

Fig. 4. Stable isotope profiles f rom - 2 

Taylor Dome, GISP2, Byrd, and L 
Vostok. A t  the top, the estimated 
precision in the Taylor Dome age .$ 
scale is shown [alternative calcula- '1 -275 
tions o f  dage (Fig. 3) produce a 
younger ages, increasing the con- O 

trast w i th  other Antarctic cores]. 
Boundaries of climate intervals, as -300 - 
defined in the ClSP2 record, are 35 
shown by dashed vertical lines S 
Hol, Holocene; YD, Younger Dryas; -250 

-325 
B/A, Berlling/Allererd; LCM, last gla- 
cial maximum. ACR is the Antarc- - 
tic  Cold Reversal as defined a t  & .275 
Byrd (4). S -350 

-300 

Differences between the isotope-tempera- 
ture history from Taylor Dome and those 
from other Antarctic sites are too large to be 
attributed to dating errors. Rather, the results 
indicate that the circum-Antarctic climate re- 
sponse to changes in NADW formation and 
expoit may not be uniform. We propose that 
the North Atlantic character of the isotopic 
record at Taylor Dome, in paiticular. reflects 
the relative proximity of this site to the west- 
em Ross Sea. an area of active wind-driven 
convection and ocean-atmosphere heat ex- 
change in today's climate (26). We note that 
a similarly heterogeneous response to tran- 
sient reduction of NADW foinlation and ex- 
poit has been observed in some numerical 
models (27). For example, in the coupled 
atmosphere-ocean general circulation model 
siinulations of Schiller et nl.  (28), near-Ant- 
arctic waters of the Southein Ocean (areas of 
vigorous oceanic convection in control sim- 
ulations) cool in response to reduced foinla- 
tion and expoit of NADW, whereas other 
areas of the Southein Ocean wain1 as a result 
of changing patterns of atmospheric circula- 
tion and increased ocean heat convergence. 
Taylor Dome may thus record the direct but 
localized influence of NADW-boine heat on 
Antarctic climate (29). Given the substantial 
difficulty of realistically simulating ocean- 
atmosphere interactions in general, and the 
dynamics of the Southern Ocean in paiticu- 
lar, it nlay be some time before the role of 
NADW in shaping Antarctic climate can be 
rigorously evaluated. In the meantime. our 
observations can and should be tested by 
collection and ailalysis of additional Antarc- 
tic ice cores, especially from near-coastal 
sites. 
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With novel structural, electronic, and me­
chanical properties, SWNTs constitute an im­
portant new form of carbon that may find 
applications in many fields (7). The function-
alization chemistry of the open ends, the ex­
terior walls (convex face), and the interior 
cavity (concave face) of the SWNTs is ex­
pected to play a vital role in tailoring the 
properties of these materials and the engi­
neering of nanotube devices. However, all of 
the currently known forms of SWNT material 
are insoluble in organic solvents (2, 3), mak­
ing it difficult to explore and understand the 
chemistry of SWNTs (4) at the molecular 
level. We report here an approach to the 
dissolution of shortened SWNTs (5) in com­
mon organic solvents. Various solution spec­
troscopies were applied to characterize the 
dissolved SWNTs. We found that the band 
gaps of some types of SWNTs can be mea­
sured directly by solution-phase near-infrared 
(IR) spectroscopy, which allows the study of 
the effects of chemical modifications on the 
band gaps of SWNTs, the key to the molec­
ular design of new SWNT-based materials. 
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local atmospheric circulation patterns may have been 
altered [D. L Morse, E. D. Waddington, E. J. Steig, 
Ceophys. Res. Lett. 25, 3383 (1998)]. We do not 
therefore expect a simple linear relation between 
proxies of ocean circulation and Taylor Dome 8D 
even if, as we suggest, changes in ocean circulation 
are the primary forcing mechanism. 
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Solution-phase wall chemistry was demon­
strated by reaction of the soluble SWNTs 
(s-SWNTs) with dichlorocarbene. The s-
SWNTs will have a rich solution chemistry, 
perhaps rivaling that of the fullerenes. They 
are versatile precursors to nanotube-based co­
polymers, composites, and metal ligands. 

The SWNT-containing raw soot (40 to 
60% purity, obtained from CarboLex Inc.) 
was prepared by the modified electric-arc 
technique (J). Purified SWNTs (>90%) and 
shortened SWNTs (100 to 300 nm in length) 
were obtained by the method of Smalley and 
co-workers (5). In the final step of purifica­
tion, we added HC1 to the aqueous suspen­
sion of SWNTs before collecting the sample, 
so that the opened ends of the purified 
SWNTs were terminated with carboxylic acid 
groups (-COOH, IR frequency vc=Q =1719 
cm-1) rather than carboxylate groups 
(-COO", vc=Q = 1620 cm"1) (Fig. 1). The 
shortened SWNTs have similar IR features. 
The Raman spectrum of the shortened 
SWNTs collected with 1064-nm excitation 
(wr = 161 cm-1, wt = 1595 cm-1, where wr 

and wt are the Raman-active radial mode and 
tangential mode frequencies of SWNTs, re­
spectively) is close to that of raw soot (cor = 
162 cm"1, wt = 1592 cm"1). The Raman 
radial mode of the SWNTs is sensitive to the 
diameter d but not to the symmetry of the 
nanotube {6, 7); hence, if wr (cm-1) = 223.75 
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