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Promotion of Dendritic Growth 
by CP615, an Activity-Induced 

Signaling Molecule 
Elly Nedivi,"? Gang-Yi Wu, Hollis T. Cline 

Activity-independent and activity-dependent mechanisms work in concert to  
regulate neuronal growth, ensuring the formation of accurate synaptic con- 
nections. CPG15, a protein regulated by synaptic activity, functions as a cell- 
surface growth-promoting molecule in vivo. In Xenopus laevis, CPG 15 enhanced 
dendritic arbor growth in projection neurons, with no effect on interneurons. 
CPG15 controlled growth of neighboring neurons through an intercellular sig- 
naling mechanism that requires its glycosylphosphatidylinositol link. CPG15 
may represent a new class of activity-regulated, membrane-bound, growth- 
promoting proteins that permit exquisite spatial and temporal control of neu- 
ronal structure. 

The cpg15 gene was identified in a forward 
genetic app~oach designed to isolate activity- 
regulated genes that mediate synaptic plasticity 
(1). In the adult rat, cpg1.5 is induced in the 
brain by ltainate (KA) and in visual coltex by 
light (2). During development. cpg1.5 expres- 
sion is col-related with times of afferent in- 
growth. dendritic elaboration. and synaptogen- 
esis (2). Seq~~ence analysis predicts a small. 
secreted protein (2) that is membrane-bound by 
a glycosylphospl~atidylinositol (GPI) linkage 
(3) .  

Antisemm generated against bacterially ex- 
pressed rat CPGI 5 recognizes a protein fro111 
rat bran dentate gyms extracts (Fig. IA) (4) of 
the size predicted by sequence analysis. A pro- 
tein of similar size is induced in Xeii.opus 1ne1'k 
after KA injections into the brain ventricle (Fig. 
1A) (5). In situ hybridizations using a partla1 
clone of Xeizoplcs cpg1.5 indlcate that the 
CPG15 mRNA is expressed in retinal ganglion 
cells and in differentiated neurons throughout 
the central nel-vous system (CNS) of stage37 
tadpoles (6) .  Xerlopl~s CPGI5 protein is present 
in neurons and axons tlxoughout the CNS (7, 
8). In the optic tectum. differentiated neurons 
label in a honeycomb pattern similar to N-CAM 
(nemal cell adhesion molecule) and other cell- 
surface antigens. while cells in the proliferative 
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zone have undetectable levels of CPG15 (Fig. 
1C). 

To investigate the cellular function of 
CPG15. we used a recornb~nant vaccinia virus 
(\i\7) to express CPGl5 in optic tectal cells of 
albino Xer~opus tadpoles (9, 10). Tadpoles were 
infected by ventricular il~jection with 1 ' 7 7  car- 
rying rat c p g l j  and p-galactosidase (p-gal) 
cDKAs ln a dual pro~noter vector, or wlth a 
control vil-us containing only the P-gal cDNA 
(11). Two days after viral infection and approx- 
inlately 24 hours after the beginning of expres- 
sion of foreign protein (9). single tectal cells 
were labeled with DiI (1 0, 12). Confocal imag- 
es through the entire smlcture of each neuron 
were collected at 24-hour intervals over a peri- 
od of 3 days. and thee-dirnens~onal (3D) im- 
ages were reconstructed ffom this (13). 

The most prominent effect of CPGl5 on 
the morphology of tectal projection neurons 
was that the dendritic arbors of neurons from 
CPG15VV-infected animals increased their 
total dendritic branch length (TDBL) and be- 
came more co~nplex than arbors of neurons 
from P-gal-infected or uninfected animals 
(Fig. 2) (14). This effect was quantified as an 
increase in averaged TDBL (Fig. 3A) and by 
Sholl analysis (Fig. 3B). 

We measured the distribution of dendritic 
arbor sizes, expressed as TDBL. within the 
population of neurons from CPG151"V-infect- 
ed animals and from control animals (Fig. 3C). 
All tlxee populations of neurons showed a 
gradual shift toward larger TDBLs as their 
dendritic arbors gro~v. The shift toward larger 
TDBLs was greatest in neurons from 
CPG15VV-infected animals. This analysis also 
delnonstrates the presence of a subpopulation 
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of cells in CPG15 W-infected animals that 
have a greater TDBL than any control cell. 
These "outliers" can be detected on all three 
days of imaging and are the most distinctive 
manifestation of the CPGI 5 overexpression 
phenotype. 

Interneurons were unaffected by CPG15 W 
infection (Fig. 4) (14, 15). It is therefore likely 
that the regulation of interneuron dendritic de- 
velopment is controlled differently from that of 
projection neurons, perhaps by different molec- 
ular participants. 

To determine whether CPG 15 could medi- 
ate intercellular signaling, we established ex- 
perimental conditions in which imaged cells 
were not likely to be infected with the 
CPG15W. Animals were infected with 
CPGl5W at a lower titer than in previous 
experiments, imaged in vivo over a Zday peri- 
od, then fixed and processed for P-gal immu- 
nohistochemistry (16). Because the W con- 
tains a dual promoter vector with the CPGl5 
cDNA cloned downstream of a strong promoter 
and the P-gal cDNA driven by the weaker p7.5 
vaccinia promoter, P-gal expression served as 
our marker for infected cells that were also 
expressing the CPGl5 protein. P-gal immuno- 
histochemistry showed that none of the 14 DiI- 
labeled neurons imaged in this experiment were 
infected with CPGISW, probably due to the 
low infection levels. Three of 14 neurons had 
TDBLs greater than any control neuron and 
were therefore outliers. We found that outliers 
do not need to express CPGl5 in order to 
exhibit an enhanced growth response; however, 
each one was in close proximity to infected 
neurons or radial glia (Fig. 5) (14). This dem- 
onstrates that the CPG15 growth promoting 
effect is mediated by a signaling molecule ca- 
pable of communicating between neighboring 
cells, possibly CPG15 itself 

Database searches do not reveal CPGl5- 

Fig. 1. CPC15 induction by kainic acid and its 
expression in Xenopus optic tectum. (A) Immuno- 
blot of protein extracts from tadpoles harvested at 
the specified times after intraventricular injection 
of KA, or rat hippocampus dentate gyri 24 hours 
after ip injection of KA (right lane). Incubation with 
the antiserum to  CPC15 labels a 12-kD band (ar- 
row) that is not seen with preimmune serum (PI). 
Confocal images of sections through the optic tecti 
of untreated tadpoles (B and C) or tadpoles infect- 
ed with CPC15W (D and E),or CPC15t3W (F and 
C). Sections probed with preimmune rabbit serum 
show no specific Labeling (B). Outlined on this sec- 
tion are the optic tectal neuropil (N), differentiated 
tectal neurons (TN), and the proliferative zone (PZ). 
These same regions can be discerned in the sections 
stained with the antisera to CPC15 [(C), (E), and 
(C)]. A honeycomb pattern of endogenous CPC15 
immunoreactivity can be seen in the TN region of 
the tectum, and retinal ganglion cell axons are 
stained in N (C). Sections from animals infected 
with virus were double-Labeled with anti-P-gal to 
show extent of infection [(D) and (F)] and with anti 
of CPC15 immunoreactivity also extends into the P 
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related proteins. The CPG15 amino acid se- (ELF-1; Cek7-L; LERK6) and ephrin-A5 
quence lacks the immunoglobulin G domains (AL1; RAGS; LERK7)-are anchored to the 
common to adhesion molecules (1 7). CPG15 membrane by a GPI linkage (18, 19) and have 
shows borderline similarity to ligands of the been implicated as guidance molecules for top- 
eph subfamily of receptor tyrosine kinases ographic mapping of retinotectal projections 
(ephrins) (18). Two of the ephrinwhrin-A2 (20). It appears that these cell-surface-bound 

Fig. 2. CPCI 5 promotes 
dendritic growth in optic 

k-gal 
tectal neurons. Drawings cell a cell b cell c 
of 3D reconstructed pro- , f' 
jection neurons from -AT / 
P-galVV-infected ani- 
mals (top panel) and 
CPCI 5VV-infected ani- 
mals (bottom panel) im- 
aged over 3 days. The 
three neurons shown in 
each group (from left to  day 
right) represent the 
range of neuronal sizes 
imaged on the first day. 2 - *-- Cell a in each panel has 
the smallest TDBL from day3  i$'-- 
all neurons in its group 
(CPCI 5 or control). Cell 
b has a TDBL closest to  
the mean branch length 

CPg 75 
of each group, and cell c cell a cell b cell c 
has the largest TDBL in 
each group. In all three $ 
examples, the neurons in ?\ - -:EX SF, 
the CPC15 group grew day l d r  +- i+.=-, 
faster and developed a ------ 
more com~lex dendritic ,= 
arbor than'did their con- 
trol counterparts. & 

day 2 
CJ 4- 

:PC15 at higher magnification [(E) and (G)]. In the infected tecti [(E) and (C)], the honeycomb pattern 
where many infected neurons are located [(D) and (F)]. Arrows mark retinotectal axons. Bar, 100 F m  

for upper panel and 50 p,m for lower panels. 
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ligands are unable to function as soluble factors 
and require presentation in a membrane-bound 
form to activate their receptors by direct cell- 
to-cell contact (21). We noted that CPGl5- 
expressing neurons and glia were located near 
the uninfected neurons with the CPG15 "out- 
lier" phenotype. To test whether CPGl5 re- 
quires the GPI linkage for its growth promoting 
function, we infected tectal cells with a W 
containing a truncated version of CPGl5 lack- 
ing the GPI consensus sequence (CPGI 5t3VV) 
(22). CPGl5t3W was expressed in infected 
cells (Fig. 1, F and G), but failed to promote 
dendritic arbor growth (Fig. 3D). Indeed, neu- 

0- 
1 2 3 

days imaged 

radius of concentric circle (pm) 

B 

rons in CPG15t3W-infected animals have a 
significantly slower growth rate than neurons 
from P-galW-infected animals (*P < 0.02; 
Fig. 3D). This indicates that CPGl5 functions 
to promote dendritic growth only in its mem- 
brane-bound form. Furthermore, the truncated 
CPG15 inhibits normal dendritic growth in de- 
veloping neurons. A truncated human homolog 
of CPG15 (neuritin) was previously reported to 
promote neuritogenesis in cultured rat hip- 
pocampal neurons (3). These qualitative obser- 
vations may reflect characteristics of the in vitro 
assay (for example, CPG15t3 immobilization 
through binding to the polylysine substrate or 
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different response properties of the cultured 
neurons). 

During nervous system development, syn- 
aptic activity influences the formation of neu- 
ronal connections, in part by controlling axonal 
and dendritic structure (23). Our studies are 
consistent with a model in which visual activity 
induces CPG15, which in turn promotes neuro- 
nal growth and structural plasticity. We show 
that CPG 15, an activity-regulated molecule, 
promotes dendritic growth through intercellular 
signaling, suggesting that it may hc t ion  as a 
ligand. It is intriguing to consider that GPI- 
linked ligands may function not only as passive 
positional labels, as in the case of ephrins, but 
also as activity-regulated growth-promoting 
signals. As a membrane-bound protein, CPG15 
might confer spatial specificity to a growth 
promoting signal, which may be lacking in 
secreted factors. As more proteins are discov- 
ered that influence neuronal outgrowth in the 

Fig. 3. Quantification of CPC15 growth-promoting effect on dendritic arbors. (A) The average TDBL of 
rostrally projecting CPC15 neurons, p-gal neurons, and uninfected control neurons is plotted over 3 
days of imaging. On the first day of imaging, the average TDBL of projection neurons from CPC15VV- 
infected animals was 447 2 69 p m  (n = 39), significantly Larger (P < 0.05) than cells from uninfected 
(257 + 31 pm; n = 32) and P-galVV-infected (260 + 43 pm; n = 22) animals. The disparity in TDBL 
between cells from CPC1 5VV-infected and control animals increases on the second day of imaging (74). 
This difference is maintained on the third day, as both populations continue to grow, at 927 2 138 p m  
(n = 24) for CPC15 neurons, compared to  553 + 53 prn (n = 31) for uninfected and 563 t- 37 p m  
(n = 19) in P-galVV-infected animals (P < 0.05). (B) Sholl analysis (24) shows that CPC15 increases 
dendritic arbor density of projection neurons from CPGlSVV-infected animals compared to  p-galVV 
controls. Concentric circles with a 10-pm spacing were drawn around the cell body, and the number of 
intersections of all dendritic branches with the circles was counted. (C) Frequency distribution of 
projection neuron TDBL values for each day of imaging from animals infected with the CPClSVV, 
P-galVV, or uninfected controls. For days 1 and 3, respectively, group sizes were n = 39 and n = 24 
for CPClSVV, n = 32 and n = 31 for p-galVV, and n = 22 and n = 19 for uninfected. (D) CPC15 
increases growth rate of projection neurons while CPC15t3W slows their growth. The growth rate for 
projection neurons from P-galVV-, CPClSVV-, or CPC15t3VV-infected animals was determined by 
subtracting TDBL on day 1 from TDBL on day 2. The growth rate of neurons in CPClSVV-infected 
animals [308 2 35 pmlday (n = 39)] was significantly greater (**P < 0.003) than that of p-galVV 
controls [ I73 2 22 pmlday (n = 32)]. In contrast, growth rates of neurons from CPC15t3VV- 
infected animals [ I10 5 24 pmlday (n = 30)] were significantly lower than their P-galVV control 
counterparts (*P < 0.02). 

" 
prolection neurons lnterneurons 

Fig. 4. CPC15 does not affect tectal interneu- 
rons. (A) Drawings of interneurons from p-gal- 
infected animals (left) and CPClSVV-infected 
animals (right) with a TDBL closest t o  the mean 
branch length of each group. (B) The growth 
rate (TDBL on day 2 - TDBL on day 1) is 
significantly greater (P < 0.01) for CPC15 pro- 
jection neurons (n = 17) than control neurons 
(n = 41). Such a difference in growth rate is not 
seen between interneurons from control 155 2 
48 pmlday (n = 13) and CPC15VV-infected 
animals 185 + 81 pmlday (n = 9) (P > 0.7). 
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brain, studies of their functions will enhance the 
understanding of wiring of neuronal connec- 
tions and their modification by activity. 

--z day 2 +. 
u 

Fig. 5. CPC15 promotes growth through inter- 
cellular signaling. (A) A 3 0  reconstruction of a 
tectal projection neuron from a CPG15W-in- 
fected animal, with a TDBL of 1684 F m  on the 
first day of imaging (day 1) and 2021 F m  on 
the second day (day 2). This cell is a clear 
outlier on both days as the largest control cell 
is 642 F m  on the first day of imaging and 1017 
F m  on the second. (0) Top panel shows a 
drawing of the tadpole optic tectum (OT) and 
the tectal ventricle (V) with the marked loca- 
tion of this cell. The green square delineates the 
region shown in the bottom panel. Bottom 
panel shows a superimposition of images col- 
lected with a 488-nm filter visualizing the Dil- 
labeled cell imaged in green and images col- 
lected with a 647-nm filter visualizing P-gal 
immunopositive cells in red. The arrow marks 
the cell imaged in (A). 
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