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TRAFl may inhibit antigen-induced apopto- 
sis in a transgenic aniinal model (21). Also, 
NF-KB can regulate c-IAP2, but this protein 
is unable, on its own; to inhibit TNF-mediat- 
ed apoptosis under NF-KB-null conditions 
but rather provides survival function through 
activating NF-KB (18). IAPs can inhibit cy- 
tochroine c-induced caspase activity and the 
proteolytic processing of caspase-3 (17). 
Consistent with this, c-IAPl and c-IAP2 ex- 
pression alone blocked etoposide-induced 
processing of caspase-3 and apoptosis in 
HT1080I cells. However, although cyto- 
chrome c release and caspase-3 activation 
occurred in TNF-mediated apoptosis in NF- 
KB-inhibited cells, the overexpression of c- 
IAPl and c-IAP2 was insufficient to inhibit 
TNF-induced processing of caspase-3 and to 
render cells resistant to apoptosis. Thus. TNF 
and etoposide may have different caspase 
requirements to efficiently kill cells; which 
supports our conclusion that the recruitment 
of c-IAPl and c-IAP2 to the receptor com- 
plex in response to TNF, presumably through 
interactions with TRAFl or TRAF2, is re- 
quired to inhibit the apical caspase, caspase- 
8. However, it is also possible that TNF- 
induced killing is somehov~ stronger than that 
induced by etoposide and requires inhibition 
at the apex of the cell death pathway. These 
obseivations underscore the importance of 
the activation of TRAFl and TRAF2 as well 
as c-IAP proteins in suppressing TNF-in- 
duced cell death. The fact that most cells 
survive a TNF-a challenge supports the hy- 
pothesis that a rapid defense mechanism in- 
duced by the activation of NF-KB is required 
to block death signaling at the initiating and 
not at the executing stage of apoptosis be- 
cause inhibiting the latter response may only 
delay cell death (8, 14). 
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Leptin is a hormone that regulates food intake, and its receptor (08-Rb) is 
expressed primarily in the hypothalamus. Here, it is shown that 08-Rb is also 
expressed in human vasculature and in primary cultures of human endothelial 
cells. In vitro and in vivo assays revealed that leptin has angiogenic activity. In 
vivo, leptin induced neovascularization in  corneas from normal rats but not in 
corneas from fa/fa Zucker rats, which lack functional leptin receptors. These 
observations indicate that the vascular endothelium is a target for leptin and 
suggest a physiological mechanism whereby leptin-induced angiogenesis may 
facilitate increased energy expenditure. 

Leptin, a circulating hormone secreted by 
adipocytes, influences body weight ho- 
meostasis through effects on food intake and 
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energy expenditure ( I ) .  It also n~odulates oth- 
er physiological actions; including lipid me- 
tabolism, hematopoiesis, pancreatic P cell 
function, ovarian fi~nction, and thermogene- 
sis (2). Despite this multiplicity of biological 
effects in extraneural tissues, the leptin recep- 
tor is expressed predominantly in the hypo- 
thalamus (3). Alternative splicing of a single 
transcript encoded by the db gene produces 
several variants of the leptin receptor, includ- 
ing a transmembrane fi~ll-length; long folm 
(OB-Rb) expressed at high levels in discrete 
hypothalamic regions (4). The OB-Rb form 
has a cytoplasmic domaill that transduces the 
leptin signal through the Jak-STAT pathv~ay 
(j> 6). 

The discovery of leptin and its receptor 
strongly supports the hypothesis that adipose 
tissue mass is regulated by a honnone that is 
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produced by adipocytes and released into the 
bloodstream (7). This endocrine concept of 
white adipose tissue implies a plastic micro- 
vascular bed that not only provides adequate 
blood supply for this endocrine function or 
for proper lipid utilization and storage but 
also undergoes the requisite adaptive changes 
that occur during physiological or pathologi- 
cal fluctuations in adiposity (8). 

We hypothesized that leptin might play an 
important physiological role in the microvas- 
culature. To test this hypothesis, we first 
determined whether the leptin receptor is ex- 
pressed in human umbilical vein endothelial 
cells (HUVECs) using confocal immunoflu- 
orescence microscopy and rabbit polyclonal 
antibodies to synthetic peptides based on the 
sequence of the human leptin receptor (9). 
With antibodies specific for the intracellular 
domain (or region) of the OB-Rb form of the 
receptor (anti-OB-Rint) (9), a,strong signal 
was detected (Fig. lA, panel 1). This signal is 

(5, 6). Treatment of HUVECs with leptin 
rapidly stimulated Stat3 phosphorylation, 
as demonstrated by immunoblotting of cel- 
lular extracts with antibodies specific for 
the tyrosine-phosphorylated form of Stat3 
(Fig. 2B) (13). Finally, we determined 
whether leptin-induced Stat3 tyrosine phos- 
phorylation enhances its DNA-binding ac- 
tivity. Electrophoretic mobility gel shift as- 
says performed with nuclear extracts from 
HUVECs treated with leptin [or interfer- 
on-y (IFN-y) as a positive control] revealed 
increased formation of a DNA-protein 
complex with the use of a Stat3-binding 
probe (Fig. 2C) (14, 15). Thus, the endo- 
thelial leptin receptor is functionally com- 
petent with respect to ligand-induced ty- 
rosine phosphorylation and activation of 
Stat3. 

We next investigated whether leptin has 

angiogenic activity. First, in vitro experi- 
ments were performed. In a modified Boyden 
chamber assay (16), cultured HUVECs ex- 
hibited a robust directional migration in re- 
sponse to leptin treatment with an apparent 
half-maximal concentration of about 4 nM 
(Fig. 3A). Vascular endothelial growth factor 
(VEGF) (1 7) was used as a positive control 
in this assay. Leptin also promoted the for- 
mation of capillary-like tubes in three-dimen- 
sional (3D) collagen gels containing 
HUVECs (18,19) (Fig. 3B). In contrast to the 
control (Fig. 3B, panels 1 and 2), exposure of 
HUVECs to VEGF (Fig. 3B, panels 3 and 4) 
or to leptin (Fig. 3B, panels 5 and 6) induced 
formation of elongated, bifurcating tubules 
that pervaded the gel matrix. The tubes 
formed in the presence of leptin displayed a 
reticular array reminiscent of tissue micro- 
vasculature (Fig. 3B, panels 5 and 6). Finally, 
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proliferation assays with several types of hu- 
man and bovine ECs (from microvascular 
and large vessel origin) exhibited variable 
mitogenic activity in response to leptin (10). 

To test leptin's angiogenic activity in 
vivo, we surgically implanted Hydron poly- 
mer pellets containing phosphate-buffered 
saline (PBS), VEGF, or leptin into the cor- 

neas of normal or leptin receptor-deficient 
faya Zucker fatty rats and monitored neovas- 
cularization (20). In normal rats, leptin 
caused a vigorous angiogenic response (Fig. 
4A), whereas in fdfa rats angiogenesis was 
seen only with VEGF; leptin had no effect in 
these animals (Fig. 4B). 

The direct angiogenic action of leptin sug- 

gests a peripheral mechanism whereby the in- 
crease in energy expenditure produced by leptin 
(which together with the hypothalarnus-mediat- 
ed satiety effect contributes to body weight 
loss) may be facilitated. By providing a local 
angiogenic signal, leptin might improve the 
efficiency of lipid release from fat stores to 
maintain energy homeostasis. An artificially in- 
duced hyperleptinemic state in normal rats 
causes increased livolvsis and lioid oxidation . . 

.. (21), accompanied by augmented expression of 
genes encoding enzymes that regulate fatty acid 
metabolism and thermogenesis, including 
UCP2 (22). Similar observations have been 
made in lean C57BW6J mice after systemic 
administration of leptin (23). In this case, in- 
creased lipid oxidation seems to coincide with 
an increase in adipose tissue vascularity (23). 

' Thus, leptin produced in adipocytes is not only 
: secreted into the bloodstream, but it may also 

act locally upon ECs in a paracrine fashion, 
causing increased fatty acid oxidation and an 
angiogenic response that maintains an appropri- 
ate balance between blood supply and fat depot 
size. In addition, leptin-induced angiogenesis 
may assist in heat dissipation at sites of active 
thermogenesis in the body, including adipose 
tissue. our observations suggest that leptin, act- 
ing as a functional link between adipocytes and 
the vasculature, might also play an important 
extrahypothalamic role in the modulation of 

, , , adipose tissue mass. 

Fig. 4. In vivo angiogenic activity of leptin. (A) Corneal response (20) 7 deficient fa/fa Zucker fatty rats 7 days after implantation of a Hydron 
days after implantation of a Hydron pellet containing PBS (panel 1) or 50 pellet containing 50 ng of leptin (panel 1). A strong positive response 
ng of leptin (panel 2). (B) Lack of corneal response in leptin receptor- with 25 ng of VECF in fa/fa rats is shown for comparison (panel 2). , 
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Disruption of a Neuropeptide 
Gene, flp- 7, Causes Multiple 

Behavioral Defects in 
Caenorhabditis elegans 

Laura S. Nelson,* Marc L. Rosoff,? Chris Li; 

Neuropeptides serve as important signaling molecules in the nervous system. 
The FMRFamide (Phe-Met-Arg-Phe-amide)-related neuropeptide gene family in 
the nematode Caenorhabditis elegans is composed of at least 18 genes that may 
encode 53 distinct FMRFamide-related peptides. Disruption of one of these 
genes, flp-7, causes numerous behavioral defects, including uncoordination, 
hyperactivity, and insensitivity to  high osmolarity. Conversely, overexpression 
of flp-7 results in the reciprocal phenotypes. On the basis of epistasis analysis, 
flp-7 gene products appear to signal upstream of a G protein-coupled second 
messenger system. These results demonstrate that varying the levels of FLP-1 
neuropeptides can profoundly affect behavior and that members of this large 
neuropeptide gene family are not futictionally redundant in C. elegans. 

FMRFamide-related neuropeptides (FaWs) romodulators in many invertebrate and verte- 
represent a large family of peptides that have brate behaviors, including muscular control 
been implicated as neurotransmitters or neu- (1). cardioregulation (2) ,  pain modulation (3), 
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