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Activation of the ATM Kinase 
by Ionizing Radiation and 
Phosphorylation of p53 
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The p53 tumor suppressor protein is activated and phosphorylated on serine-15 
in response to various DNA damaging agents. The gene product mutated in 
ataxia telangiectasia, ATM, acts upstream of p53 in a signal transduction 
pathway initiated by ionizing radiation. lmmunoprecipitated ATM had intrinsic 
protein kinase activity and phosphorylated p53 on serine-15 in a manganese- 
dependent manner. Ionizing radiation, but not ultraviolet radiation, rapidly 
enhanced this p53-directed kinase activity of endogenous ATM. These obser- 
vations, along with the fact that phosphorylation of p53 on serine-15 in 
response to ionizing radiation is reduced in ataxia telangiectasia cells, suggest 
that ATM is a protein kinase that phosphorylates p53 in vivo. 

Ataxia telangiectasia (A-T) is a rare auto- eration, hypersensitivity to ionizing radia- 
soma1 recessive disorder characterized by tion (IR), premature aging, hypogonadism. 
clinical manifestations that include pro- growth retardation, immune deficiency. and 
gressive cerebellar ataxia, neuronal degen- an increased risk for cancer (1). The gene 

mutated in A-T. ATM (ataxia telangiectasia- 
mutated), encodes a 370-kD protein that is 
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mulate p53 protein and show a subsequent 
increase in v53 activity, whereas cells with 
defective ATM show a smaller increase in 
the amount of p53 protein in response to IR 
(4, 6). Therefore, ATM appears to act up- 
stream of p53 in a signal transduction path- 
way initiated by IR. 

IR induces rapid, de novo phosphoryl- 
ation of endogenous p53 at two serine res- 
idues within the first 24 amino acids of the 
protein, one of which was identified as 
Ser" (7, 8). Phosphorylation of p53 at 
Serl' in response to DNA damage corre- 
lates with both the accumulation of total 
p53 protein as well as with the ability of 
p53 to transactivate downstream target 
genes in wild-type cells (8). Furthermore, 
phosphorylation of p53 on Ser15 in re- 
sponse to IR is diminished in cell lines 
derived from A-T patients, suggesting that 
ATM participates in this response (8). 

The PI-3-K-related protein. DNA-activat- 
ed protein kinase (DNA-PK) phosphorylates 
p53 in vitro at two different Ser-Gln motifs, 
Serl' and Ser37 (9). However. cells with di- 
minished DNA-PK activity still normally ac- 
cumulate p53 protein and undergo G, arrest 
in response to IR (10). We tested whether 
ATM might also phosphorylate p53 on Ser" 
and whether the activity of ATM toward p53 
as a substrate is regulated by IR. 

Most naturally occurring ATM mutant 
proteins are unstable (11). Because a catalyt- 
ically inactive ATM mutant is a critical con- 
trol for in vitro kinase assays. we constructed 
such a mutant that can be stably expressed. 
The putative kinase domain of ATM resides 
in the COOH-terminus of the protein. In re- 
lated proteins, three critical amino acids with- 
in this domain are necessary for phospho- 
transferase activity (2, 12). Thus, a recombi- 
nant, FLAG peptide-tagged. wild-type ATM 
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was used as a source of ATM protein, and a 
FLAG peptide-tagged, mutant ATM expres- 
sion construct was generated in which two of 
the three critical amino acid residues required 
for catalysis were mutated (Asp2870 + Ala 
and Asn2875 + Lys) (13). Wild-type and 
mutant recombinant ATM proteins were in- 
dividually expressed in 293T cells, and in 
vitro kinase activity was assessed (14). 
Equivalent amounts of wild-type (wt) and 
mutant (kd) ATM recombinant proteins were 
immunoprecipitated and incubated with 
[y-32P]adenosine triphosphate (ATP) and re- 
combinant glutathione S-transferase (GST)- 
conjugated p53 protein containing the first 
101 amino acids of p53 (GSTp53,-,,,) (Fig. 
1A). Only the wild-type enzyme phosphoryl- 
ated GSTp53,-,,, (Fig. 1B). 

Endogenous p53 becomes phosphorylated 
on SerI5 and one other serine residue within 
the first 24 amino acids of the protein in 
response to IR (8). We tested whether muta- 
tion of each of the four serine residues (S6, 
S9, S15, S20) within the first 24 amino 
acids of p53 altered the ability of ATM to 
phosphorylate the NH2-terminus of p53. 
Recombinant ATM was immunoprecipi- 
tated and used to phosphorylate wt or mu- 
tant GSTp53 ,-,,, . Wild-type recombinant 
ATM phosphorylated wt p53, SeF +Ala 
(S6A), and S9A mutant p53, but not S15A 
mutant p53 protein (Fig. 1B). Similar re- 
sults were obtained with synthetic peptides 
comprising the first 24 amino acids of p53 
(IS). Therefore, ATM or a closely associ- 
ated kinase phosphorylates GSTp53,-,,, 
exclusively on SerI5 in vitro. Wild-type 
ATM kinase also showed autophosphoryl- 
ation in this assay (Fig. 1A). Because mu- 
tation of Asp2870 and  AS^^^^^ within the 
kinase domain of ATM abolished both phos- 
phorylation of p53 and autophosphoryl- 
ation of ATM, the kinase activity observed 
in these assays appears to be intrinsic to the 

ATM protein. The DNA-PK also phospho- 
rylates SerI5 (9), but unlike DNA-PK, 
ATM was dependent upon the presence of 
Mn2+ and did not require the addition of 
exogenous DNA for activity (15). 

ATRERP-1 (ataxia telangiectasia and 
rad3-related1FRAP-related protein l), anoth- 
er PI-3-K-related family member, may share 
functional overlap with ATM in cell-cycle 
checkpoint function (16, 17). Conditional ex- 
pression of catalytically inactive ATRIFRP-1 
abrogates G2-M cell cycle arrest in response 
to IR. Furthermore, overexpression of wild- 
type ATRERP-1 complements the defective 
IR-inducible S-phase checkpoint in A-T cells 
(17). Although ATM is required for rapid 
phosphorylation of SerI5 in response to IR in 
vivo, ATM appears not to be required when 
cells are exposed to other genotoxic agents, 
such as ultraviolet (UV) radiation (8). Thus, 
other cellular kinases must also phosphoryl- 
ate p53 on SerI5 in vivo. FLAG-tagged re- 
combinant wt ATRERP-1 also showed auto- 
phosphorylation in vitro that was dependent 
upon the integrity of the catalytic domain. 
Like ATM, ATR/FRP- 1 also phosphorylated 
p53 on Ser15 in a Mn2+-dependent manner 
(Fig. lB), though ATR/FRP-1 had at least 
20-fold less activity than ATM toward 
GSTp53,-,,, when assayed under identical 
experimental conditions (Fig. 1B). Thus, p53 
appears to be a better substrate for ATM than 
ATRERP- 1. 

To test whether endogenous p53 re- 
quired ATM for phosphorylation on SerI5 
in cells treated with IR in vivo, we gener- 
ated a monoclonal antibody specific for p53 
phosphorylated at SerI5 (Fig. 2A). The p53 
protein was immunoprecipitated from nor- 
mal and A-T lymphoblasts either exposed 
to 5 Gy IR or treated with the proteosome 
inhibitor, acetyl-Leu-leu-norleucinal (ALLN), 
which causes stabilization of p53 protein (8). 
Immunoblot analysis with the monoclonal 

TWFRPI 
vt - kd 
C I A  - 

Fig. 1. Phosphorylation of Ser15 of p53 by ATM 
and ATWFRPl in vitro. We transfected 293Tl17 A AT, A M P 1  

cells with expression vectors encoding FLAC- - wt - kd - Wt - kd - 
tagged wild-type (wt) or catalytically inactive - 
(kd) ATM or ATWFRPl. After 48 hours, ATM or 
ATR was immunoprecipitated with antibody t o  
FLAC and used in an in vitro kinase assay with 
[Y-~~P]ATP and either wt, S6A, S9A, or S15A 
CSTp53,-,,, as substrates (74). Proteins from 6 
each reactlon were separated by SDS-PACE 
(7% gel), transferred to  nitrocellulose, and an- - kinas8 
alyzed either on a Phosphorlmager or by im- p .,,.-- ",- 

munoblotting. (A) Amounts of FLAG-tagged wt 6 9 15 wt wt 6 9 15 wt G S T - P ~ ~  
ATM or ATR in each kinase reaction as mea- -- 
sured by immunoblotting with anti-FLAG M2 np 

(top panel) and amount of [~-~~P]phosphate 
incorporated into ATM or ATR during the reac- ---a antl-ps3 
tion (lower panel). (B) In vitro kinase assay with 
wt CSTp53,-,,, or various mutant CSTp53,-lol proteins (S6A, S9A, or S15A) as substrates (top panel). 
Levels of substrate protein present in each reactlon were determined by immunoblotting for p53 (lower 
panel). The upper immunoreactive band represents phosphorylated CSTp53 fusion protein. ATM did not 
phosphorylate CST alone. The same exposures are shown for ATM, ATWFRPl, and corresponding 
substrate proteins in all panels shown in (A) and (B). 

antibody to phosphoserine-15 of p53 dernon- 
strated that p53 became phosphorylated only 
in normal lymphoblasts exposed to IR (Fig. 
2B) (18). Phosphoserine-15 was undetected 
in normal cells treated with ALLN, although 
they accumulated equivalent amounts of total 
p53 protein to those in irradiated cells. Phos- 
phoserine-15 p53 was also undetected in the 
1526 A-T line (Fig. 2B, upper panel). Thus, 
examination of radiation responses in ATM- 
mutant cells further supports this link be- 
tween ATM and irradiation-induced phospho- 
rylation of p53. 

Activation of endogenous ATM was ex- 
amined in two different normal lymphoblast 
cell lines exposed to 0 or 5 Gy IR (1 9). ATM 
immunoprecipitates were used to phospho- 
rylate GSTp53,-,,, in vitro. Within 20 min 
after exposure to IR, ATM protein kinase 
activity toward GSTp53,-,,, was increased 
approximately twofold (Fig. 3, B and C). 
This appeared to be an increase in the specific 
activity of ATM because the amount of 
ATM protein did not change in response to 
IR (Fig. 3A). Kinase activity toward p53 
substrate was minimal in immunoprecipitates 
from an A-T lymphoblast line (Fig. 3, A and 
B). The IR-induced activity associated with 
ATM was directed to SerI5, because the im- 
munoprecipitated endogenous ATM from ir- 
radiated cells increased phosphorylation of 
SerI5 in in vitro kinase assays (Fig. 3B). 
Therefore, ATM kinase appears to be activat- 

6 
-WT- - AT- 
C IR AL C IR AL 

;e?lSP 

Fig. 2. Posttranslational modification of p53 
on Ser15 in response t o  ionizing radiation 
requires ATM. (A) Monoclonal antibodies 
against a chemically synthesized p53 phos- 
phoserine-15 peptide (amino acids 9 through 
22) were used t o  immunoblot synthetic pep- 
tides ( l x ,  50 pg) consisting of the first 24 
amino acids of p53 with (1-24S15-P) or with- 
out (1-24) phosphoserine-15. (B) Normal 
WT (2184) or AT (1526) lymphoblasts were 
untreated (C), or were treated with 5 Cy IR 
(IR) or 20 FM ALLN (AL) for 90 min (78). The 
p53 was immunoprecipitated, subjected t o  
SDS-PACE (7.5% gel), transferred t o  nitrocel- 
lulose, and immunoblotted with the mono- 
clonal antibody t o  phosphoserine-15 p53 
(upper panel). Blots were then stripped and 
immunoblotted with antibodies t o  p53 (low- 
er panel). 
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ed in response to IR and phosphorylates p53 
on Ser15. 

Cells derived from A-T patients are not 
hypersensitive to W irradiation (I, 20). Fur- 
thermore, such cells respond normally to W 
with increased synthesis of p53, phosphoryl- 
ation of p53 on Ser15, and activation of the 
stress-activated SAP kinase (JNK) pathway 
(6, 8, 21). The kinase activity of ATM was 
not increased in W-irradiated cells (Fig. 
3C). Slight activation of ATM kinase was 
detected at more than 60 min after exposure, 
which may be due to signals generated by 

A 
-2184- -53+ AT 
0 20 60 0 20 60 0 (rnln) 

- - - - anti-ATM 

- AT 
0 0 (rnlr 

m "P 

I 
i0 (mln) 
IV 

Fig. 3. Activation of endogenous ATM kinase by 
ionizing radiation in vivo. The 2184 or 536 
individual normal lymphoblasts or 1526 AT 
lymphoblasts (AT) were either untreated or 
treated with 5 Cy IR and harvested 20 or 60 
min later. ATM was immunoprecipitated and 
assayed (Fig. 1) with wild-type CSTp53,-,,, 
protein as a substrate (79). (A) Amounts of 
ATM present in each reaction were determined 
by immunoblotting with anti-ATM (Ab-3) (upper 
panel), and the amount of radiolabel incorporated 
into ATM during the kinase reaction was visual- 
ized with a Phosphorlmager (lower panel). (B) 
Amounts of [y-32P]phosphate incorporated into 
CSTp53,-,,, during each reaction was visualized 
with a Phosphorlmager (upper panel). Serine-15 
phosphorylation of CSTp53,~,,, was determined 
by immunoblotting with anti-phosphoserine-15 
p53 (lower panel). (C) The 2184 and 536 lympho- 
blasts were treated with IR or 10 Jim2 UV radia- 
tion as above. Endogenous ATM was immunopre- 
cipitated and used in an in vitro kinase assay with 
CSTp53,-,,, as substrate. The amount of 32P- 
labeled CSTp53,-,,, was quantitated with a 
Phosphorlmager and normalized to  that obtained 
with immunoprecipitates from nonirradiated 
cells. Data are expressed as the mean 2 standard 
error of five independent experiments. 

DNA strand breaks associated with DNA re- 
pair (22). These results confirm that ATM 
plays a minor role in the cellular W response 
and suggest that another kinase other than 
ATM phosphorylates p53 on Ser15 in re- 
sponse to W irradiation. 

Previous genetic and biochemical evi- 
dence implicated the ATM gene product in 
regulating the phosphorylation and induction 
of p53 in cells exposed to ionizing radiation 
(4, 6, 8, 23). OW results indicate that ATM is 
a protein kinase whose activity is increased 
by ionizing radiation and whose in vivo target 
may be Ser15 of p53. This conclusion is 
consistent with the finding that ATM and p53 
proteins directly interact with each other (11). 
The functional ramifications of radiation-in- 
duced Ser15 phosphorylation remain to be 
clearly elucidated. However, phosphorylation 
of p53 on Ser15 reduces binding of the mdm2 
oncogene product to p53 in vitro (7), and 
binding of mdm2 to p53 promotes rapid deg- 
radation of p53 by targeting it for proteolytic 
degradation, thereby potentially controlling 
p53 protein levels (24). Because many of the 
clinical manifestations exhibited by A-T pa- 
tients cannot be attributed to abnormal regu- 
lation of p53 alone, other important targets of 
the ATM kinase remain to be identified and 
characterized. 
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