
REPORTS 

(Fig. 2C; red symbols). W e  thus conclude 
that charge iilteractioil is responsible for con- 
finenlent o f  the protein. 

Iinmobilization inay be unfavorable be- 
cause o f  steric effects or because proteins are 
not point charges. Our experiments show that 
molecules do not have to be pl~ysically im- 
mobilized to be chroinatographically re- 
tained. Trapping is fouild in a thicl< zone 
where inolecular behavior is i~lternlediate be- 
tween bulk and surface regimes. The  large 
distances involved cail~lot be explained by the 
Derjaguin-Landa~l-Ver~vey-Overbeek theory 
( 2 7 )  for i~lteractions betn eel1 charged surfac- 
es across liquids, even 111 the regline o f  re- 
duced charge densities (28). Long-range at- 
tractive iilteraction has been reported for 
polystyrene sulfonate spheres near a charged 
glass surface (29) .  The  distances (50 11111 i f  
scaled to our ionic strengths) are coinparable 
with those here, although metastable colloi- 
dal crystallites may not properly model pro- 
teins. It inay well be that restricted inotion o f  
the counter ions near the surface (11)  loners 
the efficiency o f  electrostatic shielding to 
extend the interaction distance. This implies 
that the interaction o f  protein molecules with 
biological cell surfaces call be nluch nlore 
efficient than predicted b y  randoin d i f f ~ ~ s i o n ,  
which in turn enl~ances binding to receptors. 
Although here we  relied on the inherent sur- 
face charge on fused silica to follow one type 
o f  protein retention, other interactions can be 
studied by  coating chromatographic materi- 
als, creating self-assembled monolayers, or 
attaching actual cell membranes on the solid 
surface. 
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Design of Organic Molecules 
with Large Two-Photon 

Absorption Cross Sections 
Marius Albota, David Beljonne, Jean-Luc Bredas," 

Jeffrey E. Ehrlich, Jia-Ying Fu, Ahmed A. Heikal, Samuel E. Hess, 
Thierry Kogej, Michael D. Levin, Seth R. Marder," 

Dianne McCord-Maughon, Joseph W. Perry," Harald Rockel, 
Mariacristina Rumi, Cirija Subramaniam, Watt W. Webb," 

Xiang-Li Wu, Chris Xu 

A strategy for the design of molecules with large two-photon absorption cross 
sections, 6, was developed, on the basis of the concept that symmetric charge 
transfer, from the ends of a conjugated system to the middle, or vice versa, upon 
excitation is correlated to enhanced values of 6 .  Synthesized bis(styryl)benzene 
derivatives with donor-a-donor, donor-acceptor-donor, and acceptor-donor- 
acceptor structural motifs exhibit exceptionally large values of 6, up to about 
400 times that of trans-stilbene. Quantum chemical calculations performed on 
these molecules indicate that substantial symmetric charge redistribution oc- 
curs upon excitation and provide 6 values in good agreement with experimental 
values. The combination of large 6 and high fluorescence quantum yield or 
triplet yield exhibited by molecules developed here offers potential for un- 
precedented brightness in two-photon fluorescent imaging or enhanced pho- 
tosensitivity in two-photon sensitization, respectively. 

In the presence o f  intense laser pulses; mol- 
ecules call simultaneously absorb two or 
more photons, and the transition probability 
for absorption o f  two identical photons is 
proportional to I', where I is the intensity o f  
the laser pulse. Molecules n-it11 a large two- 
photon absorption cross section. 6, are in 
great denland for variety o f  applications. in- 
cludiilg two-photonexcited fluorescence mi- 
croscopy ( I ) ;  optical limiting (2 .  3), three- 
dinlensional optical data storage (4); and 
two-photon induced biological caging studies 
( 5 ) .  These applications use tn-o lcey features 
o f  tn-o-photon absorption. namely, the ability 
to create excited states with photons o f  half 
the nonlinal excitation energy. which can 

provide iinproved penetration in absorbiilg or 
scattering media. and the I' dependence o f  
the process, which allows for excitation o f  
chromophores with a high degree o f  spatial 
selectivity in three dinlensions through the 
use o f  a tightly focused laser beam. Unfortu- 
nately, most known organic nlolecules have 
relatively snlall 6 .  and criteria for the design 
o f  molecules with large 6 have not been well 
developed (6.  7 ) .  As  a result. the full utility o f  
two-photon-absorbing materials has not been 
realized. Here. we  report on design strategies 
and structure-property studies for tn-o-photon 
absorption, which resulted in the synthesis o f  
fluorescent molecules wit11 unprecedented 6 
values. 
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Initial optical studies revealed that 4,4'- 
bis(di-11-butylamino)-E-stilbene, 2 (Fig. 1); in 
toluene solution; exhibited a strong blue flu- 
orescence that depended on I' when exposed 
to 5-11s laser pulses at 605 nm. Compound 2 
has a linear absorption peak at 374 nm, an 

when (E, - E,, - ho) is large compared with 
the damping factor for the So + S, transition. 
On the basis of the results of the calculatioils, 
as shown in Fig. 2. n-e can rationalize the 
increase in 6,0,s, on going fiom tl.rms-stil- 
belle to 4,4'-bis(dimet11ylamino)-E-stilbene on 

where fi is Planck's constant divided by 2 ~ ;  n 
is the index of refraction of the medium 

emission maximum at 410 nm; and a fluores- 
cence quantum yield, a,; of 0.90. The two- 
photon-excited fluorescence spectmm for 2 

(vacuum assumed for the calculations), L is a 
local field factor (equal to 1 for vacuum), and 
c is the speed of light. We calculated 

the basis of (i) an increase in the S, to S, 
transition dipole moment (121,~) fiom 3.1 to 7.2 
D; (ii) an increase in the So to S, transition 
dipole moment (M,,,) from 7.1 to 8.8 D. and 
(iii) a decrease in the one-photon detuning term. 
(El - E, - fio). fiom 1.8 to 1.5 eV. This 
enhancement results from the electron-donating 
properties of the telminal amino groups. The 
calculations also show that the electronic exci- 
tation from S,, to S, is accompanied by a sub- 

was essentially identical to that excited by 
one-photon absorption into S , ;  suggesting 

Iiny(-o:w,o,-o) us~ng the sum-over-states 
(SOS) (13) expresslon (the damping factor r 

that there was rapid relaxation of the state 
reached by two-photon absorption (taken to 
be S,) to the S,  state and subsequent fluores- 

has been set to 0.1 eV in all cases in this 
study). 

As can be seen in Table 1, the calculations 
predict roughly an order of magnitude en- 
hancement in 6 upon substitution of tivns- 

cence from that state. Wleasurement of the 
two-photon excitation cross section for 2 
gave a lnaximum 6 of 21 0 x 1 OP" cm" s 
photon-' at an excitation wavelength of 605 

stilbene with tem~inal dimethylamino groups. 
consistent with the experimental data present- 

stantial charge transfer (-0.14 e) from the ami- 
no groups to the central vinylene linkage. as we 

nm, n-hich is almost 20 times greater than that 
of E-stilbene. 1 (a), and is anlong the largest 
values of 6 reported for organic compounds. 

ed above. This two-photon transition is fronl 
the ground state (So. lA,) to the lowest ex- 
cited state with A, symmetry (S,; 2A,). For 
both molecules, the S, state is located at 
about 0.8 eV above the lowest one-photon 
allowed excited state (S,;  lB,,) (Fig. 2). A 
simplified form of the SOS expression for the 
peak tn-o-photon resonance value of 6(w) for 
the S, -. S, transition, 6 ,,,,,2. is 

had hypothesized, resulting in a large change in 
quadrupole lnolnent upon excitation (a similar 
sense and magnitude of charge transfer are 
calculated for the So -. S, transition). This 
pronounced redistribution of the 7-electronic 

We conjectured that the large increase in the 
two-vhoton absomtion for 2 relative to 1 was 
related to a symmetlical charge transfer fiom 
the amino nitrogen atoms to the conjugated 
bridge of the molecule 

density is correlated n-it11 an increase of elec- 
tron delocalization in the first excited state and 
results in a substantial increase in the S. to S- 

L L 

transition dipole moment. which is the major 
contributor to the enhanced 6 value of 4.4'- 
bis(dimet11ylamino)-E-stilbene n-it11 respect to 
that of tiai~s-stilbene. Another consequence of 
the terminal substitution with electron donors is 

To gain insight into the origin of the large 
6 value for 2 relative to 1. n-e verfornled 
quantum chemical calculations on 1 and 4.4'- 
bis(dilnethylamino)-E-stilbene. Using AM1 
(9) optimized geometries, we calculated the 
energles (E) and transit~on dipole moments 
(41) for the singlet exc~ted states of both 

where the subsclipts 0; 1; and 2 refer to So, S,,  
and S, states, respectively, and fio = (E, - 
E0)/2. This expression results from taking S, as 
the dominant intermediate state and is valid 

a shift of the position of the two-photon reso- 
nance to lower energy. 

colnpounds by combining the inte~nlediate 
neglect of differential overlap (INDO) (10) 
Hamiltonian with the multireference double- 
configuration interaction (MRD-CI) (11) 
scheme. The frequency dependence of 6; 

These results suggested several strategies 
to enhance 6 and tune the wavelength of the 

6(0), is related to the imaginary part of the 
second hyperpolarizability. Ii?iy(-o;o,o.-o) 
by (12) 
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two-photon absorption peak for T-conjugated dihydrobeluotl1iopl1ei1e-2-ylidenyl-l~l-dioxide 
organic molecules. Because the symmetric (compound 9) groups on both ends. creating 
charge transfer and change in quadn~pole mo- acceptor-donor-acceptor (A-D-A) com- 
ment appear to be important, for molecules with pounds. Finally, we were interested in in- 
small gound-state mesomeric quadrupole mo- troducing heavy atoms (for example, bro- 
merits; we reasoned that struchral feahlres that mine atoms; coinpound 10)  with a large 
could further enhance the change in quadn~pole spin-orbit coupling to facilitate intersystem 
moment upon excitation could be beneficial for crossing from the S, state to the lowest 
enhancing the corresponding transition dipole excited triplet state, T,, aiming to create a 
moments and the magnitude of 6. We therefore two-photon-absorbing molecule that could 
examined both theoretically and experimentally act as an efficient triplet sensitizer. 
inolecules in which (i) the conjugation length We performed the same INDO-MRD-CI 
was increased by inserting phenylene-vinylene calculations described above on a series of 
or phenylene-butadienylene groups (com- model compounds (3' to 7') for 3 to 7  where- 
pounds 3 to 5) to increase the distance over in alkyl groups on amino or alkoxy moieties 
which charge can be transferred; (ii) electron- and phenyl groups on terminal amino moi- 
accepting cyano groups were attached to the eties were replaced by methyl groups. The 
central ring of the bis(styly1)bemene backbone results (Table 1) support our proposed design 
(compound 6), creating a donor-acceptor-donor strategies. Increasing the conjugation length 
(D-A-D) motif, to increase the extent of charge of the molecule or increasing the extent of 
transfer fiom the ends of the molecule to the symmetrical charge transfer from the ends of 
center; and (iii) the sense of the symmetric the molecule to the middle, or vice versa, 
charge transfer was reversed by substituting results in a large increase of 6 and a shift of 
electron-donating alkoxy donors on all three the two-photon absorption peak to longer 
rings of the bis(styiy1)benzene and attaching wavelength relative to that of E-stilbene. 
relatively strongly electron-accepting dicyano We synthesized 3 to 10 by standard tech- 
vinyl (compound 7) ,  thiobarbituric acid (com- niques and characterized them by nuclear 
pound S), or 3-(dicyanomethylideny1)-2,3- magnetic resonance, electronic absorption, 

Table 1. Calculated and experimental two-photon excitation cross sections (6) and peak positions (TPA 
X,,,) for compounds in this work. Experimental 6 values determined with nanosecond pulses and 
femtosecond pulses (given in parentheses) are reported. The uncertainty in the experimental 6 values is 
estimated to be ~ 1 5 % .  Also reported are single-photon absorption maxima (X,,,), the wavelengths for 
fluorescence emission maxima (emission A,,,), and the fluorescence quantum yields (a,). For the 
theoretical results, 1' to 7' are model compounds for 1 to 7, wherein alkyl groups on amino or alkoxy 
moieties and phenyl groups on terminal amino moieties were replaced by methyl groups. 

Theoretical results Experimental results 

6 
TPA 

6 Emis- 
corn- TPA (10-50 corn- A ,  sion 
pound lmax cm4 s pound Xmax cm4 s (nm) Lax @t 

("I photon-l) ("I photon-') (nm) 

12 (8) 
210 

(110 at 
620 nm) 

995 
(635) 
900 

(680) 
1250 

(1270) 
1940 

(3670) 
480 
620 

(650) 
(470) 
1750 

4400* 
(3700) 

450 

fluorescence and mass spectroscopies, and 
elemental analysis (the details of which n-ill 
be described elsen-here). The two-photon ab- 
sorption cross sections of these molecules 
n-ere measured with the tn-o-photon fluores- 
cence excitation method n-it11 nanosecond 
(14) and femtosecond (7) laser pulses. In 
both cases, measurements n-ere performed 
with fluorophores with well-characterized 6 
values as reference standards (7). The posi- 
tions and magnitudes of the two-photon res- 
onances, the fluorescence quantum yields, 
and positions of the one-photon absorption 
bands are shown in Table 1. 

Several important conclusions can be 
drawn from the data in Table 1: (i) There is 
good agreement between the peak values of 6 
measured with femtosecond and nanosecond 
pulses and calculated with the INDO-MRD- 
CI method. (ii) The mDO-MRD-CI calcula- 
tions reproduce the trends in the evolutioil of 
the position of the two-photon absoiption 
peak (although, as expected, the absolute ex- 
citation energies are systematically overesti- 
mated by theory, in part because of overcor- 
relation of the ground state with the MRD-CI 
scheme). (iii) Increasing the length of the 
molecule results in a substantial increase in 6, 
as can be seen by coinparing results for 3,  4, 
and 5 with 2. (iv) Our hypothesis that D-A-D 
and A-D-A compounds should have en- 
hanced 6 is boine out by the obseivation of 
large 6 values, in the range of 620 X to 
4400 X lop5'  cm4 s photonp', for 6 to 9 
relative to bis-l,4-(2-methylstyryl)benzene, 
for which 6 is 55  X cm" photon-' 
(15).  (v) There are substantial shifts of the 
peak position of the two-photon absorption to 
longer wavelength upon increasing both the 
conjugation length and the extent of symmet- 
ric charge transfer. (vi) Compounds 3, 4 ,  6, 
and 7  have very high fluorescence quantum 
yields, indicating that they could be of inter- 
est as fluorescent probes for two-photon mi- 
croscopy. (vii) The dibromo-substituted 

Compounds 

Fig. 2. Scheme of the calculated energy levels 
and transition d i ~ o l e  moments fin debves) 
for the three low'est singlet state's for A m :  

"There is a large uncertainty in this 8 value because of a large uncertainty in the rather low value of (I]f, which is 
0.0055(? 45%). The raw @,6 product determined wi th nanosecond pulses for this compound is 37.5 X cm4 s 

pounds 1' t o  7' (which are model compounds 

photon-', and that determined wi th femtosecond pulses is 31.5 X cm4 s photon-'. In the table, we report the for to 7, wherein alkyl groups On amino Or 

upper estimate of (I]+ and the value of 6 based on it, which gives the more conservative estimate for 8. The values of a ( k O x ~  and phenyl groupson termi- 
6 obtained wi th the average (11, (based on determinations in different laboratories) are 6800 x cm4 s photon-' nal amino moieties were replaced by methyl  
(for nanosecond pulses) and 5700 x cm4 s photon-' (for femtosecond p;lses). groups) 
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compound 10 has a reasonably large 6 val- 
ue, and its fluorescence quantum yield is 
low in comparison with 3, consistent with 
efficient intersystem crossing. Preliminary 
results indicate that 10 is a singlet 0, sen- 
sitizer, which makes it a good candidate for 
cytotoxicity and photodynamic therapy 
studies in biological tissues (16). 

We suggest that T-conjugated molecules 
with large changes of quadrupole moment 
upon excitation are worthy of examination as 
molecules with large two-photon absorption 
cross sections. Molecules derived from the 
design strategies described should greatly fa- 
cilitate a variety of applications of two-pho- 
ton excitation in biology, medicine, three- 
dimensional optical memory, photonics, (1 7) 
optical limiting (2), and materials science 
(1 7). 
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Earth's Rotation Rate 
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Subdecadal changes in Earth's rotation rate, and hence in the length of day 
(LOD), are largely controlled by variations in atmospheric angular momentum. 
Results from two oceanic general circulation models (OGCMs), forced by ob- 
sewed wind stress and heat flux for the years 1992 through 1994, show that 
ocean current and mass distribution changes also induce detectable LOD vari- 
ations. The close similarity of axial oceanic angular momentum (OAM) results 
from two independent OGCMs, and their coherence with LOD, demonstrate 
that global ocean models can successfully capture the large-scale circulation 
changes that drive OAM variability on seasonal and shorter time scales. 

Changes in the rotation rate of the solid Earth 
(that is, its crust and mantle), typically yield 
variations in the LOD of about 1 ms over 
several years (1). Earth as a whole conserves 
its angular momentum (with the exception of 
tidal torques); LOD variations, in particular, 
arise largely from compensating changes in 
atmospheric angular momentum (AAM) car- 
ried by zonal (west-to-east) winds (2, 3). 
Remaining discrepancies in the axial budget 
indicate that other reservoirs also store and 
release appreciable quantities of angular mo- 
mentum on these time scales, but these have 
been less well resolved. 

In this study we show that (i) a significant 
nontidal oceanic signal can be detected in 
geodetic LOD series and (ii) this contribution 
of OAM helps to close the global budget on 
seasonal and shorter time scales. Because the 
three-dimensional observational data needed 
to compute OAM directly are not available, 
we use two OGCM simulations as a proxy for 
our analysis. These comparisons can provide 
a valuable check on the realism of the model- 
derived OAM and may be used to estimate 
contributions from other angular momentum 
reservoirs, such as changes in terrestrial and 
atmospheric water storage. 

We consider results from two OGCMs 
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whose dynamical formulations differ consid- 
erably: the Modular Ocean Model (4) 
(MOM), based on earlier multilevel models 
developed at the Geophysical Fluid Dynam- 
ics Laboratory (j), and a multilayer model 
based on an early version of the Miami Iso- 
pycnal Coordinate Ocean Model (MICOM) 
(6 ) .  Both MOM and MICOM are based on 
the primitive equations of fluid flow that use 
the Boussinesq and hydrostatic approxima- 
tions. The major differences between the two 
models are (i) their vertical coordinate sys- 
tems: MOM uses geometrical depth beneath a 
rigid lid and MICOM uses a density-based 
coordinate with a freely varying surface 
height; and (ii) their treatment of the surface 
mixed layer: MOM uses a Richardson-num- 
ber scheme (7) and MICOM uses the Kraus- 
Turner mixed layer model (8).  Both models 
have a horizontal resolution of 2" longitude 
by l o  latitude and comparable vertical reso- 
lution (22 and 12 layers, respectively). 

The OGCMs were spun up for 10 years 
starting from climatological temperature and 
salinity distributions (9), forced with clima- 
tological monthly wind stress (10) and sea 
surface temperature and salinity (9). The 
models were then driven with surface wind 
stress derived from the daily National Center 
for Environmental Prediction (NCEP) 1000- 
11Pa analysis from 1 January 1992 to 15 De- 
cember 1994, and heat flux as computed us- 
ing the bulk formulation described in (11); 
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