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Essential Role of CED-4 
Oligomerization in CED-3 
Activation and Apoptosis 
Xiaolu Yang,* Howard Y. Chang, David Baltimore? 

Control of the activation of apoptosis is important both in development and 
in protection against cancer. In the classic genetic model Caenorhabditis el- 
egans, the pro-apoptotic protein CED-4 activates the CED-3 caspase and is 
inhibited by the Bcl-2-like protein CED-9. Both processes are mediated by 
protein-protein interaction. Facilitating the proximity of CED-3 zymogen mol- 
ecules was found t o  induce caspase activation and cell death. CED-4 protein 
oligomerized in cells and in vitro. This oligomerization induced CED-3 proximity 
and competed with CED-4CED-9 interaction. Mutations that abolished CED-4 
oligomerization inactivated its ability t o  activate CED-3. Thus, the mechanism 
of control is that CED-3 in CED-3:CED-4 complexes is activated by CED-4 
oligomerization, which is inhibited by binding of CED-9 t o  CED-4. 

Apoptosis, a process of cell suicide critical 
for development and tissue homeostasis of 
multicellular organisms, is controlled by an 
evolutionarily conserved program (1, 2). Ge- 
netic studies in the nematode C. elegans have 
identified three core components of the death 
machine (2). CED-4 activates the apoptotic 
protease CED-3, whereas CED-9 inhibits 
CED-4 function. Both of these interactions 
involve direct protein-protein contact in a 
ternary protein complex termed the apopto- 
some (3-6). How these interactions activate 
or inhibit cell death is unknown. CED-3 is a 
homolog of a family of mammalian cysteine 
protease (caspase) zymogens that, when acti- 
vated, cleave various cellular proteins to ex- 
ecute apoptosis (7). CED-9 is a homolog of 
the mammalian Bcl-2 family of antiapoptotic 
proteins (8). Apaf-1, a mammalian homolog 
of CED-4 that activates pro-caspase-9, has 
also been identified (9). 

Caspase zymogens that link to surface 
receptors are autoproteolytically converted to 
mature enzymes by the induced proximity of 
their protease domains (10-12). To test 
whether CED-3 can be activated in a similar 
way, we fused the CED-3 protease domain to 
three copies of the FK506-binding protein 
(Fkp) (Fig. 1A). Expression of this fusion 
protein, Fkp3-CED-3(205), in HeLa cells 
caused minimal cell death. However, oli- 
gomerization of the fusion protein by a 
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dimeric ligand for Fkp, AP 15 10 (13), induced 
apoptosis in a dose-dependent and saturable 
manner, whereas addition of the monomeric, 
competitive Fkp ligand FK506 partially in- 
hibited the effect (Fig. 1B). In a cell-free 
system, AP1510 induced in vitro-translated, 
3sS-labeled Fkp3XED-3(205) fusion protein 
to be cleaved, generating the mature CED-3 
subunits, p17 and p15 (Fig. 1C). CED-3 pro- 
cessing was inhibited by FK506 or the 
caspase inhibitor z-DEVD (Fig. IC), indicat- 
ing that oligomerization and caspase activity 
are required for zymogen processing. These 

Fig. 1. Activation of the CED-3 protease by 
induced proximity. (A) Representation of 
CED-3 protein and Fkp fusion of the CED-3 
protease domain. p17 and p15 indicate do- 
mains that form the mature CED-3 protein. D. 
aspartic acids at the cleavage sites for the 
generation of mature CED-3. M, c-Src myristy- 
Lation signal. HA (hemagglutinin) and FLAG are 
epitope tags. (B) Oligomerization of Fkp-CED- 
3(205) enhanced its cell death activity. HeLa 
cells were transiently transfected with 0.15 pg 
of Fkp3 or FkpKED-3(205) plasmid together 
with pCMV-lacZ (0.25 pg) (23). Twelve hours 
after transfection, AP1510 (Ariad Pharmaceuti- 
cals) at the indicated final concentration and 
FK506 at 50 nM were added to the cultures. 
Cells were stained for P-galactosidase expres- 
sion 8 hours Later and scored for specific apo- 
ptosis (23). Data (mean 2 SD) were from at 
least three experiments, and in each experi- 
ment more than 300 blue cells were counted. 
(C) CED-3 processing induced by oligomeriza- 
tion. [35S]methionine-labeled FkpKED-3(205) 
was produced by coupled in vitro transcription 
and translation with TNT Reticulocyte Lysate Sys- 
tem (Promega) for 30 min. The p~oce~sing r&c- 
tion was done with final drug concentrations of 
500 nM AP1510.200 nM ~ ~ 5 5 6 ,  or 1 pM Z-Asp- 
CLu-Val-Asp (z-DEVD, Enzyme System Products), 
(70). Reaction products were resolved by SDS- 
PACE and detected by autoradiography. The bot- 
tom panel was exposed twice as long as the top 
shown on the right. 

results imply that CED-3 can be activated by 
the induced proximity provided by drug-me- 
diated protein aggregation. 

Because CED-4 interacts with CED-3, we 
reasoned that CED-4 could induce CED-3 
proximity and activation if CED-4 had the 
ability for homotypic oligomerization. This 
possibility was examined by coimmunopre- 
cipitation assays in transfected human 293T 
cells expressing two differentially epitope- 
tagged CED-4 proteins. Myc-CED-4 specif- 
ically coimmunoprecipitated FLAGXED-4, 
suggesting that CED-4 protein can oligomer- 
ize in cells (Fig. 2, A and B). Deletion anal- 
ysis revealed that the CED-4 region consist- 
ing of amino acids 171 to 435 and mutants 
incorporating it, but not other parts of CED-4, 
interacted with full-length CED-4 (Fig. 2, A 
and B). The oligomerization domain of 
CED-4 is distinct from the NH,-terminal 
CED-3-interaction domain (3), is smaller 
than the sequence required for CED-9 inter- 
action (14), and is encompassed in a domain 
that is similar to mammalian Apaf-1 (9) (Fig. 
2A). Deletion or mutation (K165R; Lys at 
position 165 mutated to Arg) of the putative 
adenosine triphosphat+binding P-loop (15) 
had no effect on CED-4 oligomerization. 
CED4L, an antiapoptotic splice variant of 
CED-4 (Id), also bound CED-4. In v i t r c~  
translated [3sS]CED-4 specifically bound to 
purified recombinant glutathione S-trans- 
ferase (GST)-CED-4 fusion protein. Equal 
amounts of either in vi-translated CED-3 
or CED-4 bound with comparable efficiency 
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to GST-CED-4, suggesting a similar affinity 
of the two interactions (Fig. 2C). The CED-4 
oligomerization is probably direct, or at a 
minimum involves proteins found in reticu- 
locyte lysates. Finally, the Apaf-1 region 
(amino acids 1 to 465) that is homologous to 
CED-4 and sufficient to activate pro- 
caspase-9 (1 7) could also homotypically oli- 
gomerize (Fig. 2D). 

To examine whether homotypic CED-4 
interactions could affect the trimeric CED-3: 
CED-4:CED-9 complex, we added the three 
components along with a truncated CED- 
4(171-549) that binds to CED-4 but not 
CED-9 or CED-3. Myc-tagged CED-4 pro- 
vided the handle for irnmunoprecipitation. 
CED-4(171-549) competed with CED-9 but 
not CED-3 for interaction with Myc-CED-4 
(Fig. 3A). CED-4(171-549) also inhibited the 
binding of a mammalian CED-9 homolog, 
Bcl-xL (3, 1 3 ,  to CED-4 without affecting 
the CED-4:CED-3 interaction (Fig. 3A). 
These results indicate that CED-9 or Bcl-xL 
binding to CED-4 is mutually exclusive with 
CED-4 oligomerization, and that CED-4 can 
simultaneously associate with itself and 
CED-3. Myc-CED-3 specifically coimmuno- 

precipitated with FLAG-CED-3 only in the 
presence of CED-4 (Fig. 3B), showing that 
CED-4 can induce the proximity of CED-3 
molecules. In these experiments, the endog- 
enous mammalian homologs did not seem to 
interfere with protein interactions, perhaps 
because of the higher expression level of the 
transfected proteins. 

To assess the functional role of CED-4 
oligomerization, we mutated amino acids 
within the CED-4 oligomerization domain 
that are conserved among CED-4, Apaf-1, 
and related plant R genes (18). Each CED-4 
mutant (mutl to mut5, Fig. 4A) expressed 
stable full-length protein but failed to oli- 
gomerize (Fig. 4B). Mutation 1 @250A, 
D251A) is a loss-of-function mutant, but it 
can still bind CED-3 (3). Similarly, mutations 
2 through 5 also can bind CED-3 (19), 
consistent with previous domain mapping ex- 
periments (3). We tested the pro-apoptotic 
activity of these CED-4 mutants in a transient 
transfection system in HeLa cells that accu- 
rately reflected the in vivo function of the 
apoptosome components. Expression of CED-3 
or CED-4 alone had no cytotoxicity in HeLa 
cells, but their coexpression led to robust 
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Fig. 2. Homotypic CED-4 oligomerization in cells and in vitro. (A) Summary of CED-4 oligomer- 
ization data. Amino acid boundaries of deletion mutants, CED-4 sequence that is similar to Apaf-1 
(shaded box) (9), the nucleotide binding P-loop (solid vertical line) (IS), the previously identified 
caspase activation and recruitment domain (CARD) (78), and the CED-9 interaction (Intxn) domain 
are indicated (74). CED-4L contains a 24-amino acid insert after amino acid 212 (76). Each CED-4 
mutant (23) was FLAG-tagged at the COOH-terminus (hatched box) and tested for interaction with 
Myc-CED-4 by coimmunoprecipitation as illustrated in (B). (B) Representative data examining 
CED-4 self association. Human 293T cells were cotransfected with 2 pg each of vector (lanes 1 and 
5) or Myc-CED-4 (lanes 2 to 4 and 6 to 8) and FLAMED-4 (lanes 1, 2, 5, and 6), FLAC-CED- 
4(171-435) (lanes 3 and 7), or FLAMED-4(171-366) (lanes 4 and 8) (23). lmmunoprecipitation 
(IP) with anti-Myc conjugated to agarose beads (Santa Cruz Biotechnology) was performed as 
described (24). The bound proteins (right panel) or 5% of input IP extract (left panel) were resolved 
by SDS-PACE and detected by immunoblotting with polyclonal FLAG antibody (Santa Cruz). 
Molecular size standards (in kilodaltons) are indicated on the right. (C) Interaction of CST-CED-4 
with in vitro-translated CED-3 and CED-4. The 35S-labeled CED-3 and CED-4 proteins were made 
with the TNT Reticulocyte Lysate System. The translation product (2 pI) was incubated with 1 pg 
of immobilized CST (lanes 1 and 3) or CST-CED-4 fusion protein (lanes 2 and 4) in 100 pl of IP-lysis 
buffer (24) for 2 hours at 4OC. After three washes with 500 )LI of buffer, the bound [35S]CED-3 or 
[35S]CED-4 proteins were resolved by SDS-PACE and detected by autoradiography. (D) Oligomer- 
ization of Apaf-l(1-465). Human 293T cells were transfected with 2.5 pg of FLAG-Apaf-l(1-465) 
plus 2.5 pg of vector (lane 1) or Myc-Apaf-l(1-465) (lane 2). Top: Cell lysates were immunopre- 
cipitated with anti-Myc beads and immunoblotted with anti-FLAG as described in (B). Bottom: 
Expression of FLAGApaf-l(1-465) in the extracts. 

apoptosis in more than 60% of the cells (Fig. 
4C). This apoptotic effect required the intrinsic 
caspase activity of CED-3 (Fig. 4C). Coexpres- 
sion of antiapoptotic proteins CED-9 or Bcl-x, 
completely inhibited the ability of CED-4 to 
activate CED-3-dependent death (Fig. 4C). 
None of the five CED4 mutants were able to 
activate CED-Zdependent death (Fig. 4C). 
The correlation between the loss of CED4 
oligomerization and the loss of the ability to 
activate CED-3 indicates that CED4 oligomer- 
ization may be essential for its pro-apoptotic 
function. 

The present study suggests CED-4 oli- 
gomerization as a unifying mechanism in ap- 
optosome function. Previous work demon- 
strated that CED-9 or Bcl-x,, upon binding 
pro-apoptotic, BH3-containing ligands such 
as Bax, is released from the apoptosome (3). 
EGL-1, a C. elegans BH3-containing ligand 
functioning upstream of CED-9, is also 
thought to displace CED-9 from CED-4 (20). 
We propose that release from CED-9 allows 
CED-4 to oligomerize, bringing the associat- 
ed CED-3 proteins into close proximity and 
facilitating subsequent autoproteolytic activa- 
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Fig. 3. (A) Effect of CED-4 oligomerization on 
the ternary CED-9:CED-4:CED-3 complex. 
FLAMED-3(C358S), FLAC-CED-9 or FLAG 
Bcl-x, and FLAG- or Myc-CED-4 (1 p g  each) 
were cotransfected with pRK vector or FLAG- 
CED-4(171-549) (2 pg each) in 293T cells in 
the indicated combinations (22). CED-4*, CED- 
4(171-549). (B) CED-4 mediates CED-3:CED-3 
interaction. Human 293T cells were cotrans- 
fected with Myc-CED-3(C358S) (2 pg), FLAG- 
CED-3(C358S) (1 pg), and FLAMED-4 (2 pg) 
in the indicated combinations. In the top panels 
of (A) and (B), cell lysates were immunoprecipi- 
tated with anti-Myc and immunoblotted with 
anti-FLAG as in Fig. 2B. The bottom panels are 
immunoblots of 5% (A) or 7.5% (B) of IP input. 
Molecular size standards (in kilodaltons) are 
shown on the left. 
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Fig. 4. Role of CED-4 oligomer- C CED-3 
ization in CED-4 function. (A) V (C3SBS) C E W  
Summary of CED-4 point mu- BO~'--" T I 

tion. Mammalian Apaf-l can also oligomer- 
ize and may function in a similar way to 
activate pro-caspase-9. In this model, the 
activation of CED-9-binding activity of a 
pro-apoptotic protein upstream of the apop- 
tosome is a key event and requires fiuther 
investigation. Additional regulators, such as 
dATP and cytochrome c ( 2 4 ,  may control 
apoptosome function through similar or dis- 
tinct mechanisms. 

Note added in prooJ It was recently 
shown that Apaf-l can form oligomers and 
may activate pro-caspase-9 molecules by oli- 
gomerizing them (22). 

tants (23). Amino acid substitu- 8 70.  

tions; CED-4 sequence that is , 60. 

similar to  Apaf-1 (shaded box) 
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Structure and Asn-Pro-Phe 
Binding Pocket of the Epsl5 

Homology Domain 
Tonny de Beer, Royston E. Carter, Katherine E. Lobel-Rice, 

Alexander Sorkin, Michael Overduin* 

Epsl5 homology (EH) domains are eukaryotic signaling modules that recognize 
proteins containing Asn-Pro-Phe (NPF) sequences. The structure of the central EH 
domain of Epsl5 has been solved by heteronuclear magnetic resonance spectros- 
copy. The fold consists of a pair of EF hand motifs, the second of which binds tightly 
to calcium. The NPF peptide is bound in a hydrophobic pocket between two a 
helices, and binding is mediated by a critical aromatic interaction as revealed by 
structure-based mutagenesis. The fold is predicted to be highly conserved among 
30 identified EH domains and provides a structural basis for defining EH-mediated 
events in protein trafficking and growth factor signaling. 

Protein interaction domains such as Src ho- plexes ( I ) .  The recently discovered EH do- 
mology domains 2 and 3 are devoted to the main (2)  is an interaction module that targets 
recruitment of ligands into multiprotein com- NPF-containing proteins such as RAB, 

NUMB (3, 4), clathrin assembly proteins (3, 
Department of Pharmacology. University of Colorado 

and synaptojanin (6 ) .  proteins containing 
~ ~ ~ l ~ h  sciences center, 4200 ~~~t ~ i ~ t h  A ~ ~ ~ ~ ~ ,  these EH domains mediate critical events in 
Denver, CO 80262, USA. endocytosis (7, 8) and actin cytoskeletal or- 
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