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How an individual effector T cell acquires a particular cytokine expression 
pattern from many possible patterns remains unclear. CD4' T cells f rom F, 
mice, which allowed assignment of the parental origin o f  interleukin-4 (IL-4) 
transcripts, were divided in to clones that  expressed IL-4 biallelically or 
monoallelically f rom either allele. The allelic pattern was transmitted as a 
stable epigenetic trait. Regulation of cytokine expression by a mechanism 
that  treats each allele independently suggests a probabilistic process by 
which a diverse repertoire of combinatorially assorted cytokine gene ex- 
pression patterns could be generated among the clonally related daughters 
of a single precursor cell. 

Descriptions of T helper (T,) cell types that 
express cytokine patterns distinct from the 
classic T,1 and T,2 subsets are not readily 
explained by current models of T cell differ- 
entiation from nai've to cytokine-expressing 
effector cells (I). The uilusual cytokine pat- 
terns appear as if generated by combinatorial 
assortment of probabilistically expressed 
genes (2, 3). We hypothesized that a proba- 
bilistically regulated gene would have two 
chances to be expressed in diploid cells and 
that, if the h i~o  alleles were regulated inde- 
pendently, a mixture of cells that used either 
one or both alleles should exist within a 
population expressing the gene. 
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Although the IL-4 gene was nonpoly- 
morphic among a number of traditional 
~Mus musculus inbred strains, a polymor- 
phism in exon 1 allowed discrimination of 
the IL-4 cDNA of inbred strains from the 
CASTIEi strain, by differential sensitivity 
to the restriction enzyme Bsg I (Fig. 1A) 
(4). CD4' T cells from (129 X CAST1 
Ei)F, hybrid mice were stimulated in vitro 
under conditions that favored the genera- 
tion of IL-4-expressing effector cells (5). 
Even under such conditions, the frequency 
of IL-4-expressing cells is less than 5% 
(3). We used a limiting-dilution approach 
to screen for monoallelic IL-4 gene expres- 
sion ( 6 ) ,  a strategy used to demonstrate 
monoallelic expression among olfactory re- 
ceptor genes (7).  

Under these conditions of limiting tem- 
plate, the semi-nested polymerase chain re- 
action (PCR) approach was, on average, 
capable of detecting IL-4 transcripts 30% 
of the time from a repeatedly screened 
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cDNA aliquot. Consequently, the PCR as- 
say was done multiple times on each of the 
nine samples that revealed the presence of a 
single allele (8) .  As demonstrated by dif- 
ferential sensitivity to Bsg I digestion, three 
samples screened repeatedly revealed only 
the CASTIEi allele, whereas six revealed 
only the BALBIc allele [Fig. 1B and (9)]. 
These data were consistent with monoal- 
lelic expression and prompted further stud- 
ies with cloned cells. 

Analysis of cloned cells allows the di- 
rect investigation of gene expression in 
individual cells and thus avoids the statis- 
tical imprecisions of the limiting-dilution 
approach. We examined a panel of 30 
CD4' T cell clones generated from 
(BALBlc X CASTIEi)F, hybrid mice by 
stimulation with allogeneic H-2b cells in 
the presence of recombinant IL-4 and IL-12 
mo~oclonal  antibody (mAb), conditions 
that favor the establishment of IL-4-pro- 
ducing clones (10). Of these alloreactive 
clones, 25 expressed IL-4, and 12 could be 
expanded and maintained long-term. Sev- 
enteen hours after activation of resting 
clones with immobilized mAbs to the T cell 
receptor (TCR) and CD28 ( I I ) ,  RNA was 
isolated and screened for the parental origin 
of the IL-4 transcripts. Twelve (48%) of the 
25 clones revealed monoallelic expression 
(eight BALBlc, four CASTIEi) and 13 re- 
vealed biallelic expression [Fig. 2A and 
(9)]. The twofold bias in favor of monoal- 
lelic expression of the BALBlc rather than 
the CASTIEi allele was not statistically 
significant. These data confirmed the sug- 
gestion from the limiting-template analysis 
that monoallelic IL-4 expression does oc- 
cur. Because some clones expressing IL-4 
from either one or both alleles were ob- 
tained from a single animal [experiment A 
(lo)], the data suggested a process distinct 
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Fig. 1. Monoallelic IL-4 gene expression in single-cell populations. (A) Strategy for 

5 Q 2 detecting the origin of the IL-4 transcript. Primers from exons 1 and 2 of the IL-4 gene 
were used to amplify reverse-transcribed cDNA. The resulting product was further 

amplified with a nested primer that spanned the exon 1-exon 2 splice junction. The resulting PCR 
products were discriminated by their sensitivities to the endonucleases Bsg I (CASTIEi gene 
product sensitive) and Sau 3AI (all gene products sensitive) as resolved after agarose gel electro- 
phoresis. (B) Limiting-dilution analysis of stimulated CD4' T cells purified from (129 X CAST/Ei)F, 
mice. Pools 3888 and 3897 were amplified and the resultant product resolved without (Uncut) or 
with (Bsg I or Sau 3AI) digestion with the indicated restriction endonucleases in the three 
consecutive lanes as indicated. Amplicons were detected in 6/16 (3888) or 7/14 (3897) separate 
experiments, of which four and five digestions are shown. 181 represents cDNA from undiluted 
material from the F, cells demonstrating the capacity to discriminate both alleles in mixed 
populations. The rightmost three samples were run on a separate gel, accounting for the increases 
in mobility of the restriction fragments. 

h m  parental imprinting wherein the same pa- in transcript abundance (Fig. 2B). Simple se- 
rental allele is used by almost all expressing quence length polymorphisms on either side of 
cells of the individual. Control experiments, in the IL-4 gene were used to confirm that both 
which reconstitutions of discrete mRNA or parental chromosomes were maintained in the 
cDNA pools were used, c o h e d  that the clones that expressed single alleles (12). 
reverse transcriptase (RT)-PCR assay could The detection of a single IL-4 allele h m  
discriminate at least a 16- to 32-fold difference the RNA pooled fkom more than lo4 F, CD4+ 

nnnn 

B 
Mix RNA 

T cells suggested that most (and perhaps all) of 
the cells in a given clone expressed the same 
allelic pattern. To examine this issue, we rean- 
alyzed 12 clones, representing all three possible 
allelic expression patterns, by sequential sam- 
pling over an extended period of continuous 
growth (Table 1) (11). The allelic expression 
pattern for each clone remained constant. Thus, 
as early as 23 days after primary stimulation, 
the allelic expression pattern had become fixed 
as a heritable, epigenetic trait. 

The experiments here suggest that IL-4 
belongs to a category of genes whose allel- 
ic expression pattern is random and estab- 
lished developmentally late (13). By anal- 
ogy with some other members of this cat- 
egory, which belong to gene families (7, 
14), we speculate that other cytokine genes 
also might be probabilistically expressed. 
The IL-2 gene was shown to be expressed 
monoallelically in CD4+ T cells (15). A 
relativelv small number of individual cells 
were analyzed at an early time after activa- 
tion, leaving open the possibility that bial- 
lelic expression for IL-2 may also occur. 
Indeed, expression of LY49 NK cell recep- 
tors was first reported to be allelically ex- 
cluded and only later shown to be biallelic 
in some cells, consistent with a probabilis- 
tic expression mechanism (16). We have 
preliminary evidence that granulocyte-mac- 
rophage-colony-stimulating factor can also 
be expressed from one or both alleles in 
CD4+ T cells (9). Thus, at least some 
cytokine genes are regulated by a mecha- 
nism that treats the alleles independently. 

Why might cytokines be expressed in a 
probabilistic manner? Such a mechanism 
would allow wmbinatorial assortment of dis- 
tinct cytokine genes among the clonal progeny 
of individual precursor T, cells sharing the 
same antigen receptor specificity. Once the 
probabilistic gene-activation mechanism ceas- 

Mix cDNA 

Fig. 2. Monoallelic IL-4 expression in CD4+ T cell clones. (A) Four CD4+ mRNA (Mix RNA) or reverse-transcribed cDNA (Mix cDNA) derived from 
T cell clones derived from (BALBIc X CAST/Ei)F, mice were analyzed as the stable monoallelic IL-&expressing clones 3C6 (CASTIEi allele) and 
described in the legend to  Fig. 1. Groupings of three consecutive lanes ID5 (BALBlc) was mixed at the indicated ratios and used to  template the 
represent IL-4 amplification products resolved in the absence or presence RT or PCR assays. The resulting IL-4 amplification products were analyzed 
of the indicated restriction endonucleases. (B) Reconstruction experi- with or without the designated restriction enzymes before resolution on 
ments t o  assess fidelity of the RT-PCR amplification procedure. Either agarose gels. 
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Table 1. Stability of IL-4 allelic expression patterns over time in individual clones 
- - - - - - - - 

IL-4 allele? (alleles) detected (number of times tested) 

Clone Exp.* Days slnce cloning? 

'Experiments A, 6, and C are as described (70). TB, B BALB!c allele; andC, CAST!Ei allele. $Day o f  cloning is defined as the day cells were first plated a t  l imit ing dilution. 

es. the cvtohne exnression uattern amone the 1 min, 72°C for 2 min) w i th  exon 1 and the nested 10. A panel of 30 alloreactive (anti-HZb) CD4+ T. 2 clones 
2 ~ 

- . . - -- - -- '= --- 

clonally related but phenomically diverse primer yielded a product 26 bp smaller. Sequence were generated from ( B A ~ B / ~  X CAST/E~)F,~ mice in 
analysis of the IL-4 gene revealed a polymorphism three separate experiments, designated A, B, and C, daughter fixed as a herita- in  exon 1 tha t  allowed discrimination of 129 and yielding 4, 3, and 23 clones. respectivelv. Series A clones * - 

ble epigenetic trait. Depending on microenvi- BALB/c f rom CAST/Ei strain cDNA by differential were derived from a single F, house hmunized intra- 
ron&n&l signals like i-12 oi K-4, selective sensitivity t o  Bsg I endonuclease. C A S T E  PCR 

products were sensitive t o  Bsg I, l iberating t w o  growth death could act to influence the prev- restriction fragments of 9 and 194 bo land for 
alence of cells that express distinct cytokine nested reactionus, 9 and 168 bp). PCR prddu;ts f rom 

patterns, presumably in a manner promoting 
successful resolution of different immunologi- 
cal challenges. Specific cytokines would thus 
act to support the survival and proliferation of 
committed cells rather than to mediate effector 
commitment, consistent with the role of cyto- 
kine gromth factors in lineage commitment of 
hematopoietic precursors (1 7). This process 
may underlie a fundamental strategy by which 
the immune system ensures that a diverse rep- 
ertoire of cytokine-producing effector cells can 
be generated from limited numbers of antigen- 
specific precursors; thus allowing selection of 
the appropriate immune response to any given 
pathogen, 
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