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sequence-specific interactions with ORC-like 
initiators. In prokaryotes, yeast, viruses, and 
now perhaps mammals, the proteins involved 
in the initiation process, and the cell cycle 
control of initiation, may be better under­
stood through analysis of replicator structure 
(22, 26, 38, 39). 
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which damage is repaired more rapidly in 
transcriptionally active DNA than in the ge­
nome as a whole (1-5). This rapid repair is 
attributable to a faster repair of lesions in the 
transcribed strand (TS) than in the nontran-
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scribed strand (NTS) o f  active human genes 
and requires an active R N A  polymerase I1 
complex (6-8). D N A  damage induced b y  
ultraviolet (UV) light is repaired b y  TCR, as 

is oxidative D N A  damage (including thymine 
glycols) (9). Deficiencies in TCR o f  oxida- 
tive D N A  damage have been found in cells 
from patients with defects in the Cockayne 

tion in these patients indicates that B R C A l  
functions as a tumor suppressor. On the basis 
o f  BRCAl 's  association with Rad51, it has 
been suggested that B R C A l  acts in concert 
with D N A  repair enzymes to maintain the 
integrity o f  the genome during periods o f  
rapid growth (14-16). B R C A l  also binds to 
R N A  polymerase I1 and several transcription 
factors, including TFIIF, TFIIE, and TFI IH 
(1 7). This association could reflect B R C A l  's 
proposed function as a transcriptional regula- 
tory protein or a role o f  B R C A l  in TCR. 

To  evaluate the role o f  B R C A l  in TCR, 
we examined mouse embryonic stem (ES) 
cell lines that contained one wild-type B r c a l  

syndrome (CS) group A and group B genes, 
in cells with certain mutations in the xeroder- 
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ma pigmentosum (XP) group G gene, and in 
cells lacking the D N A  mismatch repair pro- 
tein MSH2 (9-11). 

Gennline mutations in the BRCAl  gene 
are associated with predisposition to breast 
and ovarian cancer; they account for approx- 
imately half  o f  the inherited cases o f  these 
diseases (12, 13). The loss o f  the wild-type 
BRCAl  allele during neoplastic transforma- 

Fig. 1. TCR in a restriction fragment A o 5 1 Hours B 
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exposure of ES cells to  ionizing ra- 
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allele and one inactivated allele (Brcal(+/-I 
203.33), two inactivated Brcal alleles 
(Brcal(") 236.44.1 and Brcal(-/-) 236.44.4), 
or two wild-type Brcal alleles (E14Tg2a) (18, 
19). TCR in the actively transcribed dihydro- 
folate reductase gene (DHFR) was measured 
in cells that had been exposed to 10 Gy of 
ionizing radiation (Fig. 1). In the parental ES 
cell line E14Tg2a, the TS was repaired more 
rapidly than the NTS or the genome overall. 
The difference between the rates of repair of 
the TS and NTS was comparable to that 
observed in normal human fibroblasts. Pref- 
erential repair of the TS also occurred in the 
Brcal(+'-) 203.33 cells. In contrast, in 
Brcal" 236.44.1 and Brcal(-/-) 236.44.4 
cells, the TS was repaired at the same rate as 
the NTS and the genome overall. 

A defect in the repair of ionizing radia- 
tion-induced DNA damage in the BRCA1- 
deficient cells is consistent with a model in 
which BRCAl participates in the repair of 
DNA double-strand breaks (through its asso- 
ciation with Rad51) or repair of oxidized 
bases, the most abundant class of radiation- 
induced damage. To determine whether 
BRCAl affects the repair of specific oxida- 
tive DNA damage, we examined TCR in the 
cell lines described above using a monoclonal 
antibody (mAb) that recognizes thymine gly- 
col (Tg), a stable, oxidized base that blocks 
transcription (20). The cells were treated with 
10 rnM H,O,, which produces - 1 Tg per 10 
kb of DNA (21). The DNA was purified and 
incubated with Tg mAb, and the antibody- 
bound DNA was separated from free DNA. 
Analysis of repair in the DHFR gene of the 
parental E14Tg2a and the Brcal(+/-) 203.33 

Fig. 3. TCR in a restriction frag- 
ment containing the DHFR gene 
after exposure of ES cells to  UV 
light (10 J/mZ). Experiments 
were performed as in Fig. 1. (A) 
Autoradiograms from represen- 
tative experiments; (B) plots of 
mean values from three such 
independent experiments for 
each cell line, as indicated. Ab- 
breviations and symbols are as 
in  Fig. 1. 
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cells by hybridization with strand-specific 
probes revealed that Tg was removed more 
rapidly from the TS than from the NTS or the 
genome overall (Fig. 2). In contrast, there 
was no preferential removal of Tg from the 
TS in the two BRCAl-deficient cell lines, 
although there was no decrease in the overall 
ability of the cells to remove Tg. These re- 
sults indicate that (i) preferential removal of 
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treated cells was corrected for plating efficiency 
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repair of the DHFR gene was then examined. 
In the parental E14Tg2a cells, the TS was 
repaired much faster than the NTS or the 
genome overall (Fig. 3), and the difference in 
repair rate was comparable to that obsenred 
in normal human fibroblasts. A similar bias 
toward repair of the TS was seen with the 
Brcal(+'-I 203.33 cells. However, in contrast 
to the situation with oxidative DNA damage, 
the BRCAl-deficient cells showed normal 
preferential repair of W damage in the TS of 
the DHFR gene. This suggests that although 
fi~nctional BRCAl is essential for TCR of 
oxidative DNA damage, it is not necessary 
for repair of other types of damage in tran- 
scriptionally active genes. 

Finally, we examined whether the defect 
in TCR of oxidative damage rendered the 
BRCAl-deficient cells hypersensitive to agents 
that produce this damage. The four ES cell 
lines were exposed to increasing doses of 
ionizing radiation, and their colony-forming 
ability was then assessed. When the dose of 
ionizing radiation was less than 3 Gy, there 
was little difference in sunrival between the 
parental and BRCAl-deficient cells (Fig. 
4A). At doses greater than 3 Gy, however, the 
BRCAl-deficient cells showed reduced sur- 
vival. At the highest dose examined, 8 Gy, 
the survival of the BRCAl-deficient lines 
was reduced by 80% relative to normal cells. 
Similarly, the BRCAl-deficient lines were 
more sensitive to H202  than were the parental 
lines (Fig. 4B). At the highest dose of 8 mM, 
there was a 66% reduction in the survival 
of the BRCAl-deficient lines relative to 
normal cells. The increased sensitivity of the 
BRCAl-deficient cells was apparent even af- 
ter exposure to low concentrations of H,02. 
Consistent with results on the TCR of UT- 
induced damage, BRCAl-deficient cells ex- 

posed to UV light showed no reduction in 
colony-forming ability in comparison to pa- 
rental cells (Fig. 4C). 

Our studies show that detection or remov- 
al of Tg is severely compromised in BRCAl- 
deficient cells. However, we cannot distin- 
guish between a direct role for BRCAl in 
TCR and a role as a transcription factor es- 
sential for the expression of genes whose 
products are required for TCR of oxidative 
damage. The TCR removal of Tg, which 
occurs by base excision repair, also requires 
the CSA and CSB gene products, the XPG 
gene product, and the human DNA mismatch 
repair protein MSH2 (9-11). However, un- 
like BRCA1, these proteins are also required 
for the TCR of UV-induced damage, indicat- 
ing a more specific role for BRCAl in the 
TCR of oxidative damage. 

The hypersensitivity of the BRCAl-defi- 
cient ES cells to ionizing radiation and H202 
cannot be explained exclusively by a defect 
in the repair of DNA double-strand breaks 
because these lesions are not produced in 
abundance by H202  (22). In contrast, the 
increased sensitivity of the ~rcal(-'-) cells to 
DNA-damaging agents does correlate with 
the defective TCR measured in these cells 
after exposure to each agent. Therefore, it 
seems likely that defects in TCR alone, or 
together with some BRCAl-dependent repair 
pathway as yet undefined, leads to the de- 
creased sunrival of the mutant cells. 

The early embryonic death of Brcal ho- 
mozygote embryos, and the importance of 
this gene in tumorigenesis, is consistent with 
a role for BRCA1 and TCR in the growth and 
development of normal cells (18, 23). Defi- 
cits in TCR of endogenous oxidative damage 
could lead to inefficient transcription and the 
accumulation of mutations in critical genes, 

leading to inadequate growth during early 
development or to uncontrolled growth dur- 
ing tumorigenesis. 
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