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vides insight into the geochemical cycle of 
U in deep groundwater aquifers and anoxic 
lacustrine and marine basins. The incorpora- 
tion of U into calcite as Ue tives a poten- Coaxial Nanocable: Silicon 
tially stable host for dispersed U over geo- 
logical time scales. Carbide and Silicon Oxide 
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Fig. 1. (A) A low-magnification transmission 
electron micrograph of nanocables. (0) A mag- 
nified image shows a crystalline core and an 
amorphous layer. (Inset) The selected area dif- 
fraction pattern indicates that the crystalline 
core is P-phase Sic with the <110> axis par- 
allel to  the electron beam. The asterisks repre- 
sent twinning planes. (C) A high-resolution im- 
age of the nanocable structure. (Top inset) The 
magnified lattice fringes of the outer C-BN 
Layers. (Bottom inset) A magnified lattice im- 
age of the P-phase Sic core. 

filling the hollow cavity of the nanotubes 
with elements or compounds (9) and nano- 
rods through a carbon nanotube-confined re- 
action (10). Relatively long nanowires encap- 
sulated in carbon nanotubes have also been 
synthesized with the arc-discharge method 
(11). 

Here we demonstrate a coaxial structure that 
combines the silicon-based nanowires with the 
graphitic B-C-N nanotubes in the radial direc- 
tion and also infer a nanoscale self-organization 
mechanism for the nanotube formation consist- 
ing of multiple phases. The laser ablation setup 
formerly used for B-C-N nanotube synthesis (4) 
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Fig. 2. Elemental pro- 
files across a nano- 
cable. (A) Profiles of 
all of the elements 
present in the nano- 
cable. (B) The B and 
N profiles showing the 
tubular feature of the 
outer sheath and unity 
atomic ratio (77). (C) 
The Si and 0 profiles, in 
which the Si  concentra- 
tion is doubled to com- 
pare it with that of 0; 
the Si:O ratio in the in- 
termediate Layer is 
shown to be 1 : 2. (D) A 
reduced profile of Si in 
the center core, ob- 
tained by subtracting 
the contribution of Si 
comprised in the SiO, 
layer from the total Si 
concentration, is com- 
pared with the C pro- 
file. The Si:C ratio in the 

was modified to produc 
with the B-C-N sheath. 

- 4 0 . 2 0 0  2 0 4 0  4 0  -20 0  
Pmk position (nm) 

core wire is unity. 

:e the coaxial nanowire edge was used; therefore, the 
We used a mixed and sent the distribution of atomic 

compressed powder of BN, C, SiO, and Li,N as 
starting materials (12). Wirelike materials ob- 
tained in the ablated products are shown in a 
transmission electron micrograph (Fig. 1A) 
(13). The wires are quite clean with very few 
particles attached to their surface. They have 
high aspect ratios with lengths of up to several 
tens of micrometers and diameters of a few tens 
of nanometers. The diameter is relatively ho- 
mogeneous for each wire. A magnified image 
in Fig. 1B shows that the wire has a crystalline 
core and a surrounding amorphous layer (14). 
The selected area diffraction pattern (inset in 
Fig. 1B) indicates that the crystalline core is 
P-phase Sic, with the <110> axis parallel to 
the electron beam. Diffraction spots from { 1 1 1 } 
planes were labeled, with asterisks representing 
twinning planes. The existence of stacking 
faults implies that the Sic core was formed 
through a solid-gas reaction of C and SiO (15). 
In a high-resolution image (Fig. lC), we can see 
an additional graphitic sheath outside the amor- 
phous layer (14). Lattice fringes from the sheath 
(top left inset of Fig. 1C) indicate that the 
interlayer distance is -0.35 nm, near the (002) 
spacing of turbostratic graphitic layers of BN or 
C. From the crystalline Sic core (bottom right 
inset of Fig. lC), we can see the typical < 110> 
projection of a face-centered cubic structure 
with (1 11) plane spacing of -0.25 nm. The 
structure shown here is similar to that of a 
coaxial cable conventionally used in signal 
transmission, so we call it a coaxial nanocable. 

Elemental profiles across a nanocable 
were obtained by scanning a finely focused 
electron probe and recording the energy-loss 
spectra (16). The K edge weights were nor- 
malized for chemical profiling of all of the 
elements except for silicon for which the L 

profiles 
concent 

repre- 
rations 

(16, 17). The profiles of B, N, and 0 show 
two peaks with a central hollow, featuring 
tubular geometry due to projection of cylin- 
drical distribution (Fig. 2A). The inner diam- 
eters of the B and N profiles are close to the 
outer diameters of the Si and 0 profiles. In 
Fig. 2B, the atomic ratio of B and N is near 
unity (18), which suggests that B and N form 
the stoichiometric BN. The Si:O ratio is very 
near 1 : 2 at the amorphous region between the 
crystallized core and the graphitic sheath 
(Fig. 2C), which indicates that the intermedi- 
ate layer is amorphous SiO,. By subtracting 
the contribution of Si comprised in the inter- 
mediate layer, which is equivalent to half of 
the 0 contribution, we can reveal the Si profile 
contributed from the crystallized core (Fig. 2D). 
The profile of C is also composed of two parts, 
one from the center core and the other from the 
thin outer tubular layer. The equiatomic corre- 
lation between C and Si at the center core 

Fig. 3. Profiles of B and C across half of a nanocable, 
showing a phase separation of graphite and BN 
layers. 
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Fig. 4. (A) A sche- A matic illustration of a 
multiphase nanocable. 
Solid arrows indicate (a) @) 
the probe positions in 
the electron energy- 
loss fine structure anal- 
ysis. (B) Silicon L edge 
fine structures ob- 
tained from the periph- 
eral layer (spectrum a) 
and the center region 
(spectrum b) of a nano- 
cable as shown in (A). 
Spectrum b contains 
the contribution from 
both the center core 
and the amorphous 
layer. Spectrum c was 
obtained by subtract- 80 100 120 140 160 180 200 
ing spectrum a from spectrum b after proper normaliza- Energy loss (eV) 
tion, so it represents the chemical state of silicon atoms in 
the core wire. By comparing spectra a and c with the reference spectra d and e (18), an amorphous SiO, 
phase and a crystalline P-phase Sic are confirmed for the intermediate layer and the core, respectively; 
a.u., arbitrary units. 

confirms that the crystalline core is a stoichio- 
metric Sic. In a detailed study of B and C 
profiles from the graphitic sheath (Fig. 3), we 
noticed an anticorrelation between the B and C 
profiles, which indicates the atomically immis- 
cible BN and C as previously reported on the 
arc-discharged BCN products (5). 

Different bonding states of Si atoms within 
the nanocable were verified by the fine struc- 
ture analysis of their absorption edges. The Si L 
edges from the amorphous region (spectrum a) 
and the core region (spectrum c) are compared 
in Fig. 4B. The latter was obtained by subtract- 
ing spectrum a from spectrum b after proper 
normalization, because spectrum b contains the 
contribution from both the core and the amor- 
phous layer (see Fig. 4A). ~eatures seen in the 
near-edge region (up to 160-eV loss) reflect the 
electronic states and coordination of the Si at- 
oms (1 7). The spectra obtained from the nano- 
cable (a and c) show good agreement with the 
reference spectra obtained from the single 
phase of SiO, (d) and Sic  (e) (19). The anom- 
alous core level shift, about 6 eV higher in the 
peripheral SiO, layer, is due to charge transfer 
from Si to 0. Therefore, we can assign, by the 
chemical states, the S ic  to the core wire and the 
SiO, to the intermediate amorphous layer. 

The experimentally determined structure 
of nanocable promises great potential in ap- 
plications for electronic transportation or na- 
nodevices because it has the one-dimensional 
features of both nanowire and nanotube in the 
axial direction and builds an ideal semicon- 
ductor-insulator-semiconductor (or semicon- 
ductor-insulator-metal) heterojunction in the 
radial direction (20). The importance of the 
nanocable is not only the superior structure 
itself but also the control of the structure 
formation. The growth of nanocables could 
be divided into two steps. The first is the 
formation of Sic-SiO, nanowire through a 

reaction C (solid or vapor) + 2Si0 (gas) + 

S i c  (solid) + SiO, (solid) (10, 15). The 
second step is the coating of the BCN sheath, 
with the phase separation of BN and C into 
nanodomains. Although Li was not detected 
inside the nanocable, we found that it played 
a crucial role in forming the graphitic sheath. 
Without Li,N in the starting materials, only 
Sic-SiO, wires were formed without any gra- 
phitic sheath. This result is not surprising 
because tubular BN layers are difficult to 
form without a graphite template (4), whereas 
C reacts easily with SiO at the experimental 
temperature. The high amount of activity of 
Li with SiO could be the reason why the outer 
C layers could survive. Moreover, Li is able 
to accelerate the formation of graphitelike 
BN (21). Although many details are still un- 
known, we can see that the phases formed in the 
two steps are all controlled by the chemical reac- 
tions. Under the same scenario, self-otganization 
of nanocables with different components is also 
possible by changing chemicals in starting mate- 
rials. The electronic p m w e s  of the nanocable 
can, therefore, be tailored by combining different 
nanowires and nanotubes. 
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