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DARPP-32: Regulator of the 
Efficacy of Dopaminergic 

Neurotransmission 
A. A. Fienberg," N. Hiroi,? P. G. Mermelstein, W.-J. Song, 

G. L. Snyder, A. Nishi, A. Cheramy, J. P. O'Callaghan, D. B. Miller, 
D. G. Cole,: R. Corbett, C. N. Haile, D. C. Cooper, S. P. Onn, 

A. A. Grace, C. C. Ouimet, F. J. White, S. E. Hyman,§ 
D. J. Surmeier,/ J.-A. Girault, E. J. Nestler, P. Greengard 

Dopaminergic neurons exert a major modulatory effect on the forebrain. Do- 
pamine and adenosine 3',5'-monophosphate-regulated phosphoprotein (32 
kilodaltons) (DARPP-32), which is enriched in all neurons that receive a dopa- 
minergic input, is converted in response to dopamine into a potent protein 
phosphatase inhibitor. Mice generated to contain a targeted disruption of the 
DARPP-32 gene showed profound deficits in their molecular, electrophysio- 
logical, and behavioral responses to  dopamine, drugs of abuse, and antipsy- 
chotic medication. The results show that DARPP-32 plays a central role in 
regulating the efficacy of dopaminergic neurotransmission. 

Midbrain dopaminergic neurons play a criti- 
cal role in multiple brain functions (1-3). 
Abnormal signaling- through dopaminergic 
pathways has been implicated in several ma- 
jor neurological and psychiatric disorders, in- 
cluding Parkinsonism, schizophrenia, and 
drug abuse (4). The physiological and clinical 
importance of dopamine pathways in the 
brain makes it imperative to elucidate the 
mechanisms by which dopamine, acting on 
its receptors, produces its biological effects 
on target neurons. 

One well-sh~died molecular target for the 
actions of dopamine is DARPP-32 (3, which 
is highly enriched in virtually all medium 
spiny neurons in the striahlm (6). Dopamine, 
acting on Dl-like receptors, causes activation 
of protein kinase A (PKA) and phosphoryl- 
ation of DARPP-32 on threonine-34 (7).  
Conversely, dopamine, acting on D2-like re- 
ceptors, through both inhibition of PKA and 
activation of calcium~calmodulin-dependent 
protein phosphatase (protein phosphatase 2Bl 
calcineurin), causes the dephosphorylation of 
DARPP-32 (8) .  Several other neurotransmit- 
ters that interact with the dopamine system 
also stimulate either phosphorylation or de- 
phosphorylation of DARPP-32 through vari- 

ous direct and indirect mechanisms (9). 
DARPP-32, in its phosphorylated but not its 
dephosphorylated fosm, acts as a potent in- 
hibitor of protein phosphatase- 1 (PP- 1) (1 0). 
PP-1 controls the state of phosphorylation 
and the physiological activity of a wide array 
of neuronal phosphoproteins, including neu- 
rotransmitter receptors, ion channels, ion 
pumps, and transcription factors (11). 

That numerous pathways regulate, or are 
regulated by, the DARPP-32JPP- 1 signaling 
cascade suggests the central importance of 
DARPP-32 in mediating the biological ef- 
fects of dopamine. To evaluate this hypothe- 
sis, given the absence of any specific phar- 
macological antagonists for DARPP-32, we 
generated mice that lack this protein (12). 
The absence of DARPP-32 protein from mice 
homozygous for the mutated DARPP-32 
gene was demonstrated by immunoblotting 
striatal extracts. Immunocytochemistry con- 
firmed that the DARPP-32 protein was absent 
from mutant mouse brain (13), although the 
brains of the DARPP-32 mutant mice ap- 
peared nosmal structurally (14, 15). 

Phosphorylated DARPP-32 inhibits de- 
phosphorylation of numerous other proteins 
by PP-1. Therefore, we examined the possi- 
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bility that the DARPP-32 mutant mice might 
show an aberrant state o f  phosphorylation o f  
PP-1 substrates in response to stimulation by 
dopamine. One protein phosphorylated in 
striatum and nucleus accumbens in response 
to dopamine is the M 1  subunit o f  the N- 
methyl-D-aspartate (Nh4DA)-type glutamate 
receptor (16). We tested the effect o f  muta- 
tion o f  the DARPP-32 gene on dopamine- 
stimulated phosphorylation o f  this receptor 
(Fig. 1A). The total amount o f  Ml in slices 
o f  nucleus accumbens was unaffected by the 
loss o f  DARPP-32. Dopamine increased M 1  
phosphorylation by three- to fourfold in wild- 
type mice, but this increase was abolished in 
DARPP-32 mutant mice (17). The demon- 
stration that DARPP-32 is involved in do- 
pamine-regulated phosphorylation o f  the 
M 1  receptor is consistent with recent elec- 
trophysiological studies. Thus, in rat and 
mouse striatal neurons, dopamine, D l  ago- 
nists, and forskolin enhanced responses me- 
diated by activation o f  NMDA receptors (18, 
19). In Xenopus oocytes, DARPP-32 was 
found to be a critical'component o f  adenosine 
3',5'-monophosphate-dependent regulation 
o f  NMDA current (20). 

Activation o f  the dopamine D l  receptor- 
PKA-DARPP-32 cascade alters the electro- 
physiological properties o f  dopaminoceptive 
neurons i n  several ways. One target o f  D l  
receptors in striatal neurons is the electrogen- 
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ic ion pump Na+- and K+-dependent adeno- maintain the Na+ and K+ concentration gra- 
sine triphosphatase (Na+,K+-ATPase) (21), dients and the membrane potential that un- 
which regulates membrane potential and derlie electrical excitability. The activity o f  
electrical excitability. The principal role o f  Na+,K+-ATPase in dissociated mouse stria- 
this transmembrane protein in neurons is to tal neurons was reduced by the D l  receptor 
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Fig. 1. Reduced ability of dopaminergic agonists to regulate electrophysiological properties of 
dopaminoceptive neurons from DARPP-32 mutant mice. (A) Effect of dopamine (100 kM) on 
phosphorylation of NR1 subunit of glutamate NMDA receptor in nucleus accumbens slices. Data 
are expressed as percent radioactivity for the zero time controls (mean + SEM, n = 5, *P  C 0.05, 
Student's t test). (8) Na+,K+-ATPase activity. Acutely dissociated striatal neurons prepared from 
wild-type or mutant mice were incubated in the absence or presence of the D l  receptor agonist 
SKF 82526 (1 kM) for 10 min (n = 5). Na+,K+-ATPase activity was assayed as described (27). Basal 
Na+,K+-ATPase activity was similar in wild-type (442 + 27 nmol of inorganic phosphate per 
milligram of protein per minute) and mutant (394 + 56 nmol of inorganic phosphate per milligram 
of protein per minute) mice. * P  < 0.01; paired t test, compared with control (C) (a and c) Plot of 
peak calcium current versus time in striatal neurons. Application of the D l  receptor agonist SKF 
81297 (5 kM) resulted in greater inhibition of the whole-cell current in wild-type neurons (21.4% 
+ 2.4%, mean + SEM, n = 10) than in mutant neurons (15% + 1.1%, n = 12, P < 0.05, 
Mann-Whitney U test). (Inset) Box-plot summa of the D l  receptor-mediated inhibition of 
calcium currents in wild-type and mutant neur0ns.r and d) Representative current traces from the 
records used to construct (a) and (c), respectively. (D) Inhibitory efficacy of the D l  receptor agonist 
SKF 81297 (0.01 M, pipette concentration) on firing rate of nucleus accumbens neurons tested in 
vivo. Glutamate (0.01 M, pipette concentration) was used to drive the activity of nucleus 
accumbens neurons. For SKF 81297 delivered at lower ionotophoretic currents, glutamate-driven 
activity was significantly less in neurons recorded from wild-type (n = 7), but not in those from 
mutant (n = 14) mice. Each data point represents mean + SEM. *P  < 0.05, **P < 0.01, analysis 
of variance (ANOVA) followed by Dunnett's test. 
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agonist SKF 82526 (Fig. 1B). This inhibition 
was abolished by the D l  receptor antagonist 
SCH 23390 (22). In neurons from DARPP-32 
mutant mice, the ability of the Dl  agonist to 
inhibit Na+,K+-ATPase was eliminated (Fig. 
1B). 

D l  receptor stimulation also reduces the 
responsiveness of medium spiny neurons in 
the striatum to excitatory input at hyperpolar- 
ized membrane potentials through mecha- 
nisms that are independent of Nat,K+- 
ATPase activity (23, 24). Two such mecha- 
nisms involve PKA-mediated changes in the 
properties of voltage-dependent ion chan- 
nels-notably, Na+ and Ca2+ channels (18, 
25). ~ 6 r  example, N- and PIQ-type Ca2+ 
currents are reduced by D l  receptor-medi- 
ated activation of PKA in medium spiny neu- 
rons of rats (26). Whole-cell voltage clamp 
recordings of Ca2+ cursents revealed that D l  
receptor stimulation produces a similar, po- 
tent modulation in acutely isolated striatal 
neurons from wild-type mice (Fig. 1C). Al- 
though basal current densities were un- 
changed, the modulation of Ca2+ currents by 
D l  receptor agonists was reduced by about 

Fig. 2. (A t o  D) Reduced ability 
of amphetamine (4 x lop7  M) 
and dopamine M) t o  in- 
duce neurotransmitter release in  
DARPP-32 mutant  mice. 
[3H]CABA release (A and D) and 
[3H]dopamine release (B and C) 
were measured in  striatal micro- 
discs (A, B, and D) o r  synapto- 
somes (C) f rom wild-type (E, A )  
and mutant  (0) mice treated 
w i th  drug (B, 0) or vehicle (A). 
Drugs were applied for 5 m in  as 
indicated by solid bars (37). In no 
case was there a significant dif- 
ference between wild-type and 
mutant  mice, either in  accumu- 
lation o f  radiolabeled neuro- 
transmitter o r  in  basal amounts 
o f  neurotransmitter out f low (ve- 
hicle data are shown only for 
wild-type mice). Data were ob- 
tained f rom 8 t o  1 6  independent 
samples for each treatment. 
ANOVA was fol lowed by New- 
man-Keuls test, *P < 0.01. (E 
and F): Loss of ability o f  a neu- 
rotoxic regimen o f  methamphet- 
amine t o  damage dopaminergic 
nerve terminals in  DARPP-32 
mutant  mice. Damage was as- 
sessed by loss of dopamine (E) 
and induction o f  CFAP (F). Ho- 
mogenates of str iatum were pre- 
pared f rom wild-type and mu- 
tant  mice killed 72 hours after 
the last o f  four subcutaneous 
doses o f  methamphetamine (10 
mg lkg  in  isotonic saline, open 
bars) o r  vehicle (solid bars) ad- 
ministered at 2-hour intewals. 

50% in striatal neurons from DARPP-32 mu- 
tant mice (Fig. 1C). 

Intracellular recordings from medium 
spiny neurons in slices also provided evi- 
dence for an attenuation of D l  receptor- 
mediated changes in cellular excitability in 
DARPP-32 mutant mice. In current-clamp 
recordings from medium spiny neurons of 
rats at hyperpolarized membrane potentials, 
D l  receptor stimulation increased rheobase 
current (current injection threshold to elicit a 
single spike) through PKA-mediated reduc- 
tion in Nat currents (24, 25). In wild-type 
mice D l  receptor agonists also produced an 
increase in the current injection threshold of 
medium spiny neurons. This effect was sig- 
nificantly decreased in neurons from the 
DARPP-32 mutant mice (27). 

D l  receptor stimulation also reduces the 
responsiveness of medium spiny neurons to 
exogenous glutamate in vivo (18, 28). In the 
present experiments, extracellular electrodes 
were used to record from type 1 medium 
spiny neurons in the nucleus accumbens. 
Glutainate and a dopamiilergic ligand were 
applied near the recorded cell by iontophore- 
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sis. In wild-type mice, iontophoretic applica- 
tion of a Dl  agonist produced a dose-dependent 
decrease in glutamate-evoked activity (Fig. 
ID). In mutant mice, this Dl  receptor-mediated 
inhibition was significantly attenuated. Thus, all 
the electrophysiological results show that Dl  
receptor-triggered, PKA-dependent suppres- 
sion of medium spiny neuron excitability at 
hyperpolarized membrane potentials was sig- 
nificantly attenuated in DAWP-32 mutant 
mice. 

The psychostimulant D-amphetamine in- 
duces a massive outflow of dopamine from 
nigrostriatal nerve teiminals, which in turn 
increases the release of y-aminobutyric acid 
(GABA) from nerve teiminals of medium 
spiny neurons of rat in vivo and in vitro (29). 
This paradigm was used to assess the ability 
of endogenous dopamine to stimulate the ef- 
flux of [3H]GABA in striatal slices from 
wild-type and DARPP-32 mutant mice. A 
large efflux of [3H]GABA was evoked by 
D-amphetamine in wild-type mice, but this 
effect was significantly attenuated in the 
DARPP-32 mutant mice (Fig. 2A). This ef- 
fect of the DARPP-32 deletion was attribut- 
able to both a decrease in amphetamine-in- 
duced dopamine release, as shown in striatal 
slices (Fig. 2B) and synaptosomes (Fig. 2C), 
and a decrease in dopamine-induced GABA 
release (Fig. 2D). Further evidence for an 
alteration in the properties of dopaminergic 
neurons in DARPP-32 mutant mice was ob- 
tained in studies of methamphetamine neuro- 
toxicity (30). The administration of a neuro- 
toxic regimen of methamphetamine to wild- 
type mice caused severe damage to dopami- 
nergic nerve terminals, as shown by a 
reduction in dopamine (Fig. 2E) and an in- 
crease in glial fibrillary acidic protein 
(GFAP), an index of injuly-induced gliosis 
(Fig. 2F). These effects were abolished in the 
mutant mice (Fig. 2: E and F). The observa- 
tions that deletion of the DARPP-32 gene 
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mean x SEM for five mice. *Sig- 
nificantly different f rom wi ld  type, P < 0.05 (ANOVA followed by Duncan's test). 

Table 1. Reduced ability of raclopride t o  induce 
catalepsy in DARPP-32 mutant mice. Catalepsy 
testing (39) was conducted 30 min after intraperi- 
toneal injection of vehicle or raclopride (n = 12 
per dose group). Wild-type and mutant control 
mice injected with vehicle remained stationary for 
an average of 17 s. Data represent percentage 
increase in catalepsy (mean i SEM) relative t o  
vehicle-injected control animals. Data were ana- 
lyzed by ANOVA, followed by Student's t test. 

Increase in catalepsy (%) 
Raclopride 

(mglkg) Wild type Mutant 

* P  < 0.05 compared wi th wild-type control; * * P  < 0.01 
compared wi th wild-type control. 
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lease from, and methamphetamine-induced 
toxicity to, dopaminergic neurons demon- 
strate that the effect of this deletion on the 
biological properties of the medium spiny 
neurons is strong enough to alter the charac- 
teristics of other neurons in this brain region, 
which do not contain DARPP-32. 
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Fig. 3. Reduced ability of psychostimulant 
drugs of abuse to  induce molecular and behav- 
ioral responses in DARPP-32 mutant mice. (A) 
Quantitation of Fos-like immunoreactive stria- 
tal nuclei in wild-type (solid bars, n = 4) and 
mutant (open bars, n = 7) mice given amphet- 
amine (10 mg/kg) intraperitoneally 2 hours be- 
fore use (38). Counts were obtained from dig- 
itized images of sections through the anterior 
and posterior striatum divided into quadrants 
along the dorsal-ventral and medial-lateral 
axes. *P < 0.05 compared with wild-type con- 
trol (Mann-Whitney U test). (8) Induction of 
AFosB isoforms in mouse striatum by chronic 
intraperitoneal administration of cocaine (20 
mg/kg once a day for 6 days). (Left) Immuno- 
blotting with antiserum t o  Fos-like protein (33) 
showing the 35- to  37-kD AFosB isoforms and 
a 45-kD protein (representing full-length FosB). 
(Right) Quantitative analysis of induction of 
the AFosB isoforms; n = 8 t o  15, *P < 0.01 
compared with the saline control [Fisher least 
significant difference (LSD) post hoc tests]. (C) 
Locomotor activity (33), induced by a single, 
acute cocaine injection (10 or 20 mg/kg) in 
wild-type (left) and mutant (right) mice; *P < 
0.05, **P < 0.01 compared with the respective 
control (Fisher LSD post hoc tests, n = 6 to  15). 

A well-characterized molecular conse- 
quence of dopaminergic signaling in the stri- 
atum is the regulation of gene expression. 
Agents that increase dopaminergic neuro- 
transmission-for example, amphetamine 
and cocaine-have been shown to induce 
several Fos-like proteins in medium spiny 
neurons in the striatum, an effect that is me- 
diated largely by activation of Dl-like recep- 
tors (31). Acute exposure to amphetamine 
elicited a robust induction of Fos-like immu- 
noreactivity throughout the striatum of wild- 
type mice. Significant reductions in this re- 
sponse were observed in most regions of the 
striatum in DARPP-32 mutant mice (Fig. 
3A). This deficit in c-Fos induction in the 
mutant mice was partially overcome by ad- 
ministration of a higher dose of amphet- 
amine (32). Chronic exposure to drugs of 
abuse leads to the accumulation of distinct 
Fos-like proteins, isoforms of AFosB (33), 
an effect that also is largely mediated by 
Dl-like receptors (34). Induction of the 35- 
to 37-kD AFosB isoforms, observed in stri- 
atum of wild-type mice in response to chronic 
administration of cocaine, was virtually abol- 
ished in the DARPP-32 mutant mice (Fig. 3B). 
These results indicate that DARPP-32 plays an 
important role in the short- and long-term 
changes in gene expression elicited by acute 
and chronic drug exposure, respectively. 

Acute exposure to cocaine stimulates lo- 
comotor activity in rodents, an effect largely 
mediated by increased dopaminergic trans- 
mission in the striatum, particularly the nu- 
cleus accumbens [see (l)]. This effect of 
cocaine, which is mediated in part via the 
dopamine Dl receptors (35), was significant- 
ly attenuated in DARPP-32 mutant mice at 
lower, but not higher doses of the drug (Fig. 
3C). Acute locomotor responses to D-amphet- 
mine  were also reduced in the mutant mice 
(36). No difference, however, was observed 
between wild-type and mutant mice in base- 
line measures of locomotor activity (Fig. 3C) 
or in the spontaneous locomotor activity mea- 
sured by 24-hour monitoring in the animals' 
home cages (36). 

Raclopride and other antipsychotic drugs 
induce catalepsy in rodents by a mechanism 
involving blockade of striatal D2-like dopa- 
mine receptors. Because raclopride increases 
the basal phosphorylation of DARPP-32 and 
prevents the D2 receptor-mediated decrease 
in DARPP-32 phosphorylation in mouse stri- 
atal slices (a), we tested the possibility that 
this behavioral effect of raclopride might be 
altered in the DARPP-32 mutant mice. 
Raclopride produced catalepsy in both wild- 
type and mutant mice; however, its effective- 
ness at lower concentrations (0.25 and 0.5 
m a g )  was greatly reduced in the mutant 
mice (Table 1). 

This study has revealed that inactivation 
of the DARPP-32 gene markedly reduced, 

and in some cases abolished, various respons- 
es to dopaminergic agonists and antagonists. 
In some instances, the impairment of re- 
sponses could be overcome by increasing the 
concentration of the test substance used. 
These observations can be readily explained 
by the fact that stimulation of dopamine re- 
ceptors regulates phosphorylation of key sub- 
strates by two synergistic pathways: one in- 
volves direct phosphorylation of these sub- 
strates by PKA, and the other involves inhi- 
bition of their dephosphorylation by PP-1, the 
activity of which is regulated by DARPP-32. 
Both pathways are required when the levels 
of stimulation of dopamine receptors are low 
(most physiological situations). In contrast, at 
supraphysiological levels of stimulation, the 
robust activation of the direct PKA pathway 
alone appears sufficient to restore responses 
in the mutant mice, which is why some of the 
deficits observed in these mice could be over- 
come by increasing the strength of the stim- 
uli. From these data we conclude that a cas- 
cade involving dopamine-mediated receptor 
activation of DARPP-32, inhibition of PP-1, 
and potentiation of phosphorylation of neu- 
ronal substrates plays a major role in regulat- 
ing the efficacy of dopaminergic neurotrans- 
mission under physiological conditions. 

Numerous neurotransmitters besides do- 
pamine have been shown to produce physio- 
logical responses and to regulate phosphoryl- 
ation or dephosphorylation of DARPP-32 in 
medium spiny neurons (9). The results of this 
study indicate that such regulation of 
DARPP-32 is probably a major molecular 
mechanism bv which information received 
through dopaminergic and other signaling 
pathways is integrated in these neurons, which 
constitute the principal efferent pathway fiom 
the striatum. Furthermore, the decreased sensi- 
tivity of mutant mice to drugs of abuse and 
antipsychotic agents indicates the involvement 
of DARPP-32 in mediating the pharmacologi- 
cal effects of both of these classes of com- 
pounds. Drugs that mimic or block the inhibi- 
tory effects of DARPP-32 on PP-1 might pro- 
vide useful agents for the treatment of Parkin- 
son's disease, schizophrenia, drug addiction, 
and other neuropsychiatric disorders involving 
abnormal doparninergic function. 
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