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function, possibly through direct interaction 
with IQGAPl. 

The amount of a-catenin, but not that of 
p-catenin, associated with E-cadherin was re- 
duced when IQGAPl (but not IQGAP1-hC) 
was overexpressed in EL cells (Fig. 4C) (20). 
Overexpression of IQGAP 1 or IQGAP1 -hC 
did not affect the amounts of E-cadherin, 
a-catenin, or p-catenin expressed in these cells: 
and the amounts of recombinant IQGAPl and 
IQGAP 1 -AC were similar (13). Thus, overex- 
pression of IQGAPl appeared to induce disso- 
ciation of a-catenin from the cadherin-catenin 
complex. The dissociation of a-catenin from 
p-catenin may be responsible for the in vivo 
action of IQGAP 1. 

Treatment of cells with pervanadate re- 
sults in the dissociation of a-catenin from the 
cadherin-catenin complex, and the dissocia- 
tion of a-catenin from the complex correlates 
with the decrease in cadherin activity (21). 
Dissociation of a-catenin from the cadherin- 
catenin complex also occurs during the pas- 
sage of human breast epithelial cells (22). 
Our data suggest that IQGAPl might partic- 
ipate in these processes. 
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Positive Selection Through a 
Motif in the a p  T Cell Receptor 

B. Thomas Backstrom," Urs Miiller, Barbara Hausmann, 
Ed Palmert 

The t w o  lineages of T cells, ap and y6, differ in their developmental 
requirements: only ap T cells require major histocompatibil ity complex 
recognition, a process known as positive selection. The ap T cell receptor 
(TCR), but  not  its y6 counterpart, contains a mot i f  w i th in  the a-chain 
connecting peptide domain (a-CPM) that  has been conserved over the last 
500 mil l ion years. In transgenic mice expressing an ap TCR lacking the 
a-CPM, thymocytes were blocked in  positive selection but  could undergo 
negative selection. Thus, the a-CPM seems t o  participate in  the generation 
of signals required for positive selection. 

Positive selection of a p  thymocytes gener- 
ates a T cell repertoire that is self-major 
histocompatibility complex (MHC) restricted 
(1-4), whereas negative selection ensures 
that the immune system is self-tolerant (5-7). 
Although the ap TCR mediates both forms of 
thymic selection, the distinction between pos- 
itive and negative selection signals has been 
difficult to define. The TCR a-chain has an 

amino acid motif in its connecting peptide 
domain (a-CPM) that is conserved in all 
a-chains from bony fish to humans (8). Al- 
though the a-CPM has been conserved over 
the last 500 million years (9): it is not found 
within the y6 TCR. a p  TCRs containing a 
defective a-CPM are unresponsive to anti- 
gens and are aberrantly associated to the CD3 
complex (8). To test whether the a-CPM 
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imparts a specific signaling function to ap T 
cells during thymic selection, we generated 
transgenic mice expressing a wild-type aP 
TCR or a TCR that lacked the a-CPM and 
followed the selective events during T cell 
ontogeny. These experiments showed that 
thymocytes expressing TCRs without a com- 
plete a-CPM were not efficiently positively 
selected, but nevertheless could be negatively 
selected. 

The wild-type 3BBM74 TCR (10) is pos- 
itively selected in mice expressing I-Ab and 
negatively selected in mice expressing 
I-Abm12. Transgenic mice expressing a 
Va2.1NP8.1 wild-type 3BBM74 receptor 
(encoded by the a wild-type and P wild-type 
cDNAs) or an a-CPM defective 3BBM74 
TCR [encoded by the a111 and PI11 cDNAs; 
described in ( l l )]  were generated by inject- 
ing DNA into C57BW6 (B6) zygotes. Re- 
combination deficient. B6.RAG-2" mice ex- 
pressing either the wild-type or mutant TCR 
transgenes were used in all experiments. 

The mutant and wild-type TCRs were 
comparably expressed on the surface of 
thymocytes (Fig. 1A); however, the mutant 
mice contained fewer TCRhi thymocytes. 
The mean of TCR expression on mutant 
peripheral T cells was slightly decreased 
(-30%), but the range of TCR expression 
on mutant and wild-type T cells was similar 
(Fig. 1A). Wild-type or mutant TCRs were 
immunoprecipitated from thymocytes or 
lymph node T cells, and the presence of the 
CD3 y, 6, and e subunits and 5 chains was 
detected by protein immunoblotting (Fig. 
1B). The CD3F subunit was absent from 
immunoprecipitates of mutant TCRs, even 
in the presence of the mild detergent digi- 
tonin. Furthermore, the t chain did not 
coprecipitate with the mutant TCR ex- 
pressed by peripheral T cells. In contrast, 
all CD3 subunits and the 5 chain were 
coimmunoprecipitated with the wild-type 
TCR (Fig. 1B). 

Analysis of the CD4-8- (double-negative; 
DN), CD4+8+ (double-positive; DP), and 
CD4+8- or CD4-8+ (single-positive; SP) 
thymocyte populations showed a reduction in 
the percentage of CD4'8- SP cells in the 
mutant animals (Fig. 2A). The percentage 
(Fig. 2B) and total number (12) of CD4+ 8- 
SP thymocytes could differ by a factor of 30. 
The thymi of mice expressing the mutant 
TCR maintained a low number of CD4+8- 
thymocytes for >10 weeks (Fig. 2B); thus, 
the developmental defect was not relieved 
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with time. Thymi from mutant TCR mice type TCR (12), and the percentage of DP 
contained twice the number of cells as thymi thymocytes was increased in the mutant mice 
from transgenic mice expressing the wild- (Fig. 2A). To study the efficiency of allelic 

Fig. 1. Surface expression A 
and composition of wild- 
type and mutant TCRlCD3 
complexes. (A) Thymocytes 
and lymph node cells from 
wild-type and mutant 
B6.Rag-2-'- transgenic mice 
were harvested and stained 
with the mAb to  Va2,BZO.l 
(34), which is specific for 
the transgenic a-chain. (B) 5 5 nj 1 1; Thymocytes and lymph 2; 
node cells from wild-type 
and mutant transgenic mice Thymus Lymph 
were harvested and lysed in TCR ( v d )  TCR ( v d )  Node 

a buffer containing 1% dig- 
itonin. The TCR complex was immunoprecipitated with 820.1 mAb and resolved by SDS-poly- 
acrylamide gel electrophoresis. The CD3 y, 6, e, and t proteins were identified as previously 
described (35). 

Fig. 2. Analysis of positive se- A 
lection in the thymus. 86.Rag- 

B 

2-I- mice expressing either the 
wild-type or the mutant TCR $g 
were used for these experi- 
ments. (A) Thymocytes were 
collected, stained with mAbs t o  
CD4 and CD8 (34), and ana- $ 
lyzed by flow cytometry. The '9 p s  g 4 numbers indicate the percent- ,$ 0 , . :... 
age of cells in each quadrant. - .?,.: 
(B) After staining with mAbs to  5 .;':! ' . 0.4 2 3 4 5 6 7 8 9 1 0 1 1  
CD4 and CD8 (34) and flow cy- CD4 Age of mice (weeks) 
tometric analysis, the percent- 
age of CD4+8- SP thymocytes was calculated. Each data point represents the mean percentage of 
CD4+8- SP thymocytes from two or three mice. Wild type (open circles); a-CPM mutant (filled 
squares). 

Fig. 3. Analysis of peripheral A 
cells in mice bearing a posi- 
tive selection ligand (I-Ab). 
(A) Splenocytes were col- 
lected, counted, stained with 
mAbs to  Va2 and VP8 (34), 

+ 

and analyzed by flow cytom- 
etry. After determining the 
percentage of TCRf cells 
and the total number of 1.~bml2 splenocytes I well 
splenocytes, the total num- 
ber of T cells per spleen was B 
calculated. Each data point 
represents the mean number g .bf 
of T cells per spleen from .- I 
two or three mice. Spleno- ,, . 2, 

cytes were used because it is r ' 10  0.3 \-3o 0.5 
difficult to  obtain lymph C D ~  C D ~  
nodes from extremely young 
Rag-2-I- animals. Wild type (open circles); a-CPM mutant (filled 
squares). (B) Lymph node cells from 7-week-old 86.Rag-2-I- mice I - A ~ I ~  S P ~ ~ O C Y ~ ~ S  I 

expressing either the wild-type or the mutant TCR were collected, 
stained with mAbs t o  CD4 and Va2 (34), and analyzed by flow cytometry. The numbers indicate 
the percentage of cells in each quadrant. (C) Mixed leukocyte cultures were initiated between 2 X 
lo5  responder lymph node cells from 7-week-old mice expressing either the wild-type (open 
circles) or the mutant (filled s uares) TCR and titrated numbers of irradiated stimulator spleen cells 
from 86.C.H-2-bml2 (I-Abm3) mice. After 4 days, the cultures were pulsed with 0.5 pCi of 
[3H]thymidine overnight, and the incorporation was determined. There was no response to  
stimulator cells from 86 (1-Ab) mice (72). (D) Mixed leukocyte cultures were carried out as 
described in (C), and the concentration of interleukin-3 was determined as described (8). Wild type 
(open circles); a-CPM mutant (filled squares). There was no response t o  stimulator cells from 86 
(I-Ab) mice (72). 
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exclusion, a parameter of positive selection 
(13), wild-type and mutant animals were 
crossed to B6 mice to restore recombination. 
Expression of the wild-type TCR excluded 

A Thymus Lymph Node 

Hoechst 33342 Hoechs133342 

Fig. 4. Analysis of negative selection induced by 
the alloantigen I - A ~ " ' ~ .  (A) Seven-week-old 
B6.~ag-2-'- I - A ~ / ~ ~ ~ ~  mice expressing either 
the wild-type or the mutant TCR were used for 
these experiments. Thymocytes were stained 
with mAbs to CD4 and CD8 (34) and analyzed 
by flow cytometry. Lymph node cells were 
stained with mAbs to CD4 and Va2 (34) and 
analyzed by flow cytometry. The numbers in- 
dicate the percentage of cells in each quadrant. 
(8) B6.Rag-2-/- (I-Ab) mice expressing either 
the wild-type (open squares) or mutant (filled 
squares) TCR were used in an in vitro assay 
(76-79) to determine the responsiveness of DP 
thymocytes to  I-Abm12. Thymocytes were 
cocultured for 16 hours with splenocytes from 
06 (/-Ab) or B6.C.H-2-bm12 animals 
(36) in the presence of titrated amounts of the 
I-Abmq2 blocking mAb, 3JP (34). Cells were then 
stained with mAbs to Va2, CD4, and CD8 (34). 
DP thymocytes were gated and analyzed for 
intensity of CD4 and CD8 staining. (C) Thymo- 
cytes were cocultured for 12 to 16 hours with 
I-Abm12 splenocytes (36). Cells were harvested, 
stained with Hoechst 33342, and subsequently 
stained with mAbs to Va2, CD4, and CD8 (34). 
DP thymocytes were gated and analyzed for 
intensity of Hoechst 33342 staining. Thymo- 
cytes undergoing apoptosis stain more brightly 
with Hoechst 33342; the percentage of these 
cells is indicated in the figure. 

the rearrangement of endogenous a-chains, 
whereas expression of the mutant receptor 
did not (12). Taken together, these data sug- 
gest a severe block in positive selection. 

The appearance of transgenic T cells in 
the periphery was analyzed in recombina- 
tion-defective (RAG-2-I-) mice (Fig. 3A). 
Within the first 4 weeks, T cells expressing 
the mutant receptor increased slowly, re- 
flecting the inefficient positive selection in 
the thymus (Fig. 2). By 7 weeks, the num- 
ber of splenic T cells in wild-type and 
mutant TCR transgenic mice were roughly 
equivalent (Fig. 3A). These mutant lym- 
phocytes were thymus-derived CD4+8- T 
cells (Fig. 3B) (14). Even though CD4+ T 
cells expressing the mutant receptor accu- 
mulated slowly in the periphery, they were 
unresponsive to the I-Ab"12 alloantigen 
(Fig. 3, C and D), probably because of 
inadequate 5 chain coupling to the mutant 
TCR (Fig. 1B). Thus, peripheral T cells in 
the mutant mice may have been selected by 
an escape or a default pathway (15). Alter- 
natively, the mutant T cells may have been 
refractory to antigen stimulation subse- 
quent to an expansion in the periphery. 

Mice expressing the wild-type or the mutant 
TCR were crossed to B6.C.H-2-bm12, Rag-2-'- 
animals to introduce a ligand (I-Abm12) that 
induces negative selection. Thymocytes and 
lymph node cells from offspring expressing 
I-Ab"12 and the transgenic TCR were analyzed. 
There were few C D 4 + 8  SP thymocytes in 
mice expressing either the wild-type TCR (Fig. 
4A) or the mutant TCR, and the expression of 
I-Abn1l2 reduced thymocyte number by -30% 
in both strains (12). In the periphery of both 
wild-type and mutant mice, there were few 
TCRtCD4+ cells (Fig. 4A), indicating that 
both the wild-type and mutant T cells were 
negatively selected. 

To directly examine the susceptibility of 
DP thymocytes to negative selection, an in 
vitro assay was used (16-19). DP thymocytes 
respond to negative selection ligands by 
down-regulating CD4 and CD8. Therefore, 
thymocytes from B6.Rag-2-' (I-Ab) mice 
expressing either the wild-type or the mu- 
tant TCR were cultured with antigen pre- 
senting cells (APCs) from B6.C.H-2-bm12 
(I-Abm12) mice in the presence of varying 
amounts of an I-Ab"12 blocking antibody 
(Fig. 4B). In this way, the I-Abm12 alloan- 
tigen available on the APC surface could be 
titrated. Both wild-type and mutant DP thy- 
mocytes responded similarly to the I-Abm12 
antigen over an equivalent concentration 
range of blocking antibody by down-regu- 
lating CD4 and CD8 (Fig. 4B). Thus, DP 
thymocytes bearing the a-CPM mutant 

tant thymocytes became apoptotic as a con- 
sequence of antigen (I-Abn112) recognition 
(Fig. 4C). Thus, DP thymocytes bearing a 
TCR lacking the a-CPM were able to un- 
dergo negative selection that resulted in 
apoptosis. 

We show that positive selection is more 
profoundly affected than negative selection in 
mice expressing a TCR with a mutant 
a-CPM, which suggests that positive selec- 
tion is regulated by a distinct structure within 
the a p  heterodimer. Although the mutant 
TCR contains alterations in its connecting 
peptide, transmembrane, and cytoplasmic do- 
mains ( I I ) ,  the a-CPM is likely to be the 
critical element. Positive selection is normal 
in transgenic animals coexpressing a wild- 
type a chain and the PI11 chain (12). Further- 
more, only TCRs with a mutant a-CPM ex- 
hibit a poor association to CD36 (20). That 
positive selection is defective in CD36-'- 
mice (21) is consistent with our observation 
that the a-CPM mutant TCR is aberrantly 
associated to the CD36 chain (Fig. 1B). 

These data support a molecular affinity 
model for thymic selection, which proposes 
that the TCRICD3 complex decides be- 
tween positive and negative selection by 
initiating qualitatively distinct signaling 
pathways. A low-affinity ligand would ini- 
tiate positive selection through the a-CPM 
and CD36. A high-affinity ligand would 
activate additional elements of the TCRJ 
CD3 complex, generating distinct negative 
selection signals. That independent signals 
mediate positive and negative selection has 
been postulated (22), and other experimen- 
tal evidence is consistent with this idea 
(23-26). 

The conserved structural differences be- 
tween a p  and y6 TCRs may be related to the 
differences in the ontogeny of a p  and y6 T 
cells (21, 27-29). Unlike y6 cells, the devel- 
opment of a p  T cells depends on an MHC- 
driven, intrathymic, positive selection and the 
presence of the a-CPM and CD36 (21) within 
the TCR complex. Given that the a-CPM has 
been conserved in a T cell lineage for which 
positive selection is obligatory, we suggest 
that the a-CPM evolved to facilitate the type 
of signals specifically required for positive 
selection. 
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Efficacy of Dopaminergic 

Neurotransmission 
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Dopaminergic neurons exert a major modulatory effect on the forebrain. Do- 
pamine and adenosine 3',5'-monophosphate-regulated phosphoprotein (32 
kilodaltons) (DARPP-32), which is enriched in all neurons that receive a dopa- 
minergic input, is converted in response to dopamine into a potent protein 
phosphatase inhibitor. Mice generated to contain a targeted disruption of the 
DARPP-32 gene showed profound deficits in their molecular, electrophysio- 
logical, and behavioral responses to  dopamine, drugs of abuse, and antipsy- 
chotic medication. The results show that DARPP-32 plays a central role in 
regulating the efficacy of dopaminergic neurotransmission. 

Midbrain dopaminergic neurons play a criti- 
cal role in multiple brain functions (1-3). 
Abnormal signaling- through dopaminergic 
pathways has been implicated in several ma- 
jor neurological and psychiatric disorders, in- 
cluding Parkinsonism, schizophrenia, and 
drug abuse (4). The physiological and clinical 
importance of dopamine pathways in the 
brain makes it imperative to elucidate the 
mechanisms by which dopamine, acting on 
its receptors, produces its biological effects 
on target neurons. 

One well-sh~died molecular target for the 
actions of dopamine is DARPP-32 (3, which 
is highly enriched in virtually all medium 
spiny neurons in the striahlm (6). Dopamine, 
acting on Dl-like receptors, causes activation 
of protein kinase A (PKA) and phosphoryl- 
ation of DARPP-32 on threonine-34 (7).  
Conversely, dopamine, acting on D2-like re- 
ceptors, through both inhibition of PKA and 
activation of calcium~calmodulin-dependent 
protein phosphatase (protein phosphatase 2Bl 
calcineurin), causes the dephosphorylation of 
DARPP-32 (8).  Several other neurotransmit- 
ters that interact with the dopamine system 
also stimulate either phosphorylation or de- 
phosphorylation of DARPP-32 through vari- 

ous direct and indirect mechanisms (9). 
DARPP-32, in its phosphorylated but not its 
dephosphorylated fosm, acts as a potent in- 
hibitor of protein phosphatase- 1 (PP- 1) (1 0). 
PP-1 controls the state of phosphorylation 
and the physiological activity of a wide array 
of neuronal phosphoproteins, including neu- 
rotransmitter receptors, ion channels, ion 
pumps, and transcription factors (11). 

That numerous pathways regulate, or are 
regulated by, the DARPP-32JPP- 1 signaling 
cascade suggests the central importance of 
DARPP-32 in mediating the biological ef- 
fects of dopamine. To evaluate this hypothe- 
sis, given the absence of any specific phar- 
macological antagonists for DARPP-32, we 
generated mice that lack this protein (12). 
The absence of DARPP-32 protein from mice 
homozygous for the mutated DARPP-32 
gene was demonstrated by immunoblotting 
striatal extracts. Immunocytochemistry con- 
firmed that the DARPP-32 protein was absent 
from mutant mouse brain (13), although the 
brains of the DARPP-32 mutant mice ap- 
peared nosmal structurally (14, 15). 

Phosphorylated DARPP-32 inhibits de- 
phosphorylation of numerous other proteins 
by PP-1. Therefore, we examined the possi- 
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