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Role of Phosphorylation in 
Regulation of the Assembly of 

Endocytic Coat Complexes 
Vladimir I. Slepnev. Gian-Carlo Ochoa, Margaret H. Butler, 

Detlev Grabs, Pietro De Camilli* 

Clathrin-mediated endocytosis involves cycles of assembly and disassembly of 
clathrin coat components and their accessory proteins. Dephosphorylation of 
rat brain extract was shown t o  promote the assembly of dynamin 1, synap- 
tojanin 1, and amphiphysin into complexes that also included clathrin and AP-2. 
Phosphorylation of dynamin 1 and synaptojanin 1 inhibited their binding t o  
arnphiphysin, whereas phosphorylation of amphiphysin inhibited its binding t o  
AP-2 and clathrin. Thus, phosphorylation regulates the association and disso- 
ciation cycle of the clathrin-based endocytic machinery, and calcium-depen- 
dent dephosphorylation of endocytic proteins could prepare nerve terminals for 
a burst of endocytosis. 

Clathrin-mediated endocytosis plays a key the amphiphysin dimer, and synaptojanin 1.  
role in the recycling of synaptic vesicles in Dynamin 1 oligomerizes into collar structures 
nerve terminals, and several components of at the neck of deeply invaginated clathrin- 
the molecular machine~y involved in this pro- coated pits, and its conformational change is 
cess have been identified (I). These include, thought to be an essential step leading to 
in addition to clathrin and the clathrin adap- vesicle fission (2). Synaptojanin 1 is a pre- 
tors, the guanosine triphosphatase dynamin 1,  synaptic inositol 5-phosphatase enriched on 

endocytic intermediates (3). The amphiphy- 
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sin diher (4- 6 )  binds to both dynamin 1 and 
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*TO whom correspondence be addressed. E- Dis~ption of SH3-mediated interactions of 
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Fig. 1. A macromolecular complex comprising several endocytic proteins can be affinity-purified 
from a Triton X-100 brain extract by the PRD of dynamin (73). (A) Schematic drawing of the CST 
fusion proteins used for affinity chromatography (8). (B) Coomassie blue staining of the startin 
rat brain extract and of the material affinity purified by the four constructs shown in (A). (Cf 
lmmunoblot analysis of the material shown in (B). (D) lmmunoblot analysis of the material 
affinity-purified by the PRD in the absence and presence of the indicated amounts of amphiphysin 
1, SH3 domain of amphiphysin 1, and central fragment of amphiphysin 1 (amino acids 262 to 435). 
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cytosis at the step of invaginated coated pits site of clathrin-mediated endocytosis. 
(9). The amphiphysin dimer also binds to To identify potential major binding part- 
clathrin ( I  0, I I )  and to the a-adaptin subunit ners for the proline-rich domain (PRD) of 
of the plasma membrane clathrin adaptor dynamin other than amphiphysin, a total 
AP-2 (9, 12) and thus may mediate recruit- brain extract was affinity purified on gluta- 
ment of dynamin 1 and synaptojanin 1 to the thione S-transferase (GST) fusion proteins 

Startlng Bound to 
- + + + A T  - - material GST-ampl + - phosphms8lnhlbftors - - - + kinare inhibitor - + - +  ATP 

0.1 dynamin 1 
L 0 * amphlphysin 1 -. - synaptojnnln 1 

I) 
.) - I, amphlphysln 2 

D 
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- clr 
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P I  I 
N N N l  
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clatMn heavy 
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' ~ l *  - amphiphysln 1 chain - - padaptin #a = amphiphysin 2 
a-adaptfn 
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adaptins) 

comprising the entire PRD or COOH-termi- 
nal truncations of the PRD (Fig. 1A) (13). A 
set of proteins was specifically bound by 
full-length PRD and by a deletion construct 
missing the last 16 amino acids (PRDAC16) 

Fig. 2. Interaction of amphiphysin with other F 
endocytic proteins is regulated by phosphoryl- startlng GST- app. 
ation. Desalted rat brain extracts were used in material domain 
irnmunoprecipitation and affinity-purification n-adaptin 
experiments after preincubation under the con- 
ditions indicated in (22). (A) Protein blots of - + - + ATP 
immunoprecipitates generated from a total rat 
brain Triton X-100 extract (22) by monoclonal - 4  - amphlphysln 1 

antibodies directed against the NH, region of 
amphiphysin 1. The presence of ATP and phos- U - dynamin 1 
phatase inhibitors affects coprecipitation of dy- 
namin 1, synaptojanin 1, AP-2 adaptor compo- 
nents, and clathrin but not of amphiphysin 2. G 

but not by a construct lacking an additional 
16 amino acids (PRDAC32) or a larger por- 
tion of the PRD (Fig. 1, B and C). The crucial 
16 amino acids contain the amphiphysin bind- 
ing site (8). The major afiinity-purified protein 
bands were identified as amphiphysins 1 and 2, 
the a and p subunits of the AP-2 clathrin 
adapter complex (a- and P-adaptin, respective- 
ly) (14), and clathrin, based on both their elec- 
trophoretic mobilities and coenrichment during 
afiinity purification with the corresponding im- 

(0 )  Monoclonal antibodies directed against am- 
phiphysin 1 were used to generate immunopre- 
cipitates from Triton X-100 extracts of a total 100 . 
brain homogenate (70). lmmunoprecipitates z 
were reacted by irnrnunoblotting with the an- 5 8 0 .  
tibody CD9, which recognizes both am- E 
phiphysins 1 and 2 (5) or by an overlay assay 60.  
(8) with CST or a CST fusion protein compris- 
ing amino acids 1 to  150 of arnphiphysin 1 (6). 6 40 . 
The arnphiphysin 1 fragment binds both am- = 
phiphysins 1 and 2 regardless of their state of a 

20. 
phosphorylation as revealed by the upper mo- 
bility shift. (C) lmmunoblot for dynamin 1 and 

munoreactivities as determined by imrnuno- 
blotting. Additional proteins were found by im- 

amphiphysln 1 

munoblotting to be specifically retained by the 
PRD constructs containing the amphiphysin 
binding site (Fig. 1C) (15). These included 
dynamin 1, synaptojanin 1, and other compo- 

synaptojanin 1 of the starting Triton X-100 0 .  

brain extract and of the material affinity-puri- - ATP + ATP 

fied by a CST fusion protein comprising full-length amphiphysin 1 (7). (0) The AP-2 complex and 
clathrin bind directly to  distinct sites in the central part of amphiphysin 1. Coomassie blue staining 
of rnaterial affinity purified from a Triton X-100 brain extract (22) by CST fusion proteins (100 
pg/ml) comprising indicated fragments of arnphiphysin 1. (E) Triton X-100 rat brain extracts 
preincubated in the presence or absence of ATP and phosphatase inhibitors were affinity-purified 
on a CST fusion comprising amino acids 262 to  435 of amphiphysin 1. Eluates were analyzed by 
protein blotting. (F and C )  Brain cytosol was affinity-purified on a CST fusion protein comprising 
the appendage domain of a-adaptin (25). The affinity-purified material was reacted by protein 
blotting for amphiphysin 1 and dynarnin 1 (F) and band intensity was quantified by a Phosphor- 
Imager (G).  Bars represent the mean 2 SD of two independent experiments. 

nents of the endocytic machinery, such as epsl5 
and AP180 (16). Two other SH3 domain-con- 
taining proteins, SH3p4 (endophilin 1) and 
SH3p8 (endophilin 2) (1 7), bound to all GST- 
PRD constructs (Fig. lC), suggesting a local- 
ization of the binding site for these proteins 
upstream of the amphiphysin binding site. 

Other than amphiphysin, none of endo- 
cytic proteins that were affinity-purified by 
using the PRD and PRDAC 16 constructs con- 
tain an SH3 domain. Thus these  rotei ins mav 
form multimeric complexes with amphiphy- 
sin. In agreement with this possibility, bind- 
ing of AP-2 and clathrin was increased by 
the addition of full-length recombinant am- 
phiphysin 1 and decreased by the addition 
of amphiphysin fragments (Fig. ID). Fur- 
thermore, antibodies to amphiphysin could 
coprecipitate proteins of the complex from 
brain lysates (see below). If these complex- 
es occur in vivo, their formation would be 
likely to undergo regulation because of the 
cyclic nature of the association and disso- 
ciation of the endocytic machinery. Be- 
cause several proteins of the complex are 
known to be phosphoproteins [for example, 
clathrin, AP-2 (18, 19), dynamin 1, synap- 
tojanin 1, and amphiphysin (4, 20, 21)], we 
used immunoprecipitation experiments to 
determine whether protein-protein interac- 
tions with the complexes were regulated by 
phosphorylation. 

Rat brain extract (22) was depleted of 
nucleotides and incubated in the presence or 
absence of adenosine triphosphate (ATP) and 
either a protein kinase inhibitor or a protein 
phosphatase inhibitor mixhire. This material 
was subjected to immunoprecipitation with 
monoclonal antibodies specifically directed 
against the NH,-terminal region of amphi- 
physin 1, which do not recognize amphi- 
physin 2 (22). Amphiphysin 1 had a slower 
mobility after incubation in the presence of 
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both ATP and phosphatase inhibitors (Fig. 
2A), which confirms the effectiveness of the 
phoshorylation reaction under these condi- 
tions (21). A similar shift (Fig. 2A) was 
exhibited by amphiphysin 2 (23). In addition 
to amphiphysin 1, the antibodies coprecipi- 
tated amphiphysin 2, dynamin 1, synaptoja- 
nin 1, AP-2 (a- and P-adaptin), and clathrin. 
Preincubation of the extract with ATP and 
phosphatase inhibitors did not affect copre- 
cipitation of amphiphysin 2 but did cause a 
significant decrease in coprecipitation of oth- 
er components of the complex, which sug- 
gests that phosphorylation affects these inter- 
actions (Fig. 2A). 

The coprecipitation of amphiphysin 2 from 
both phosphorylated and dephosphorylated 
brain extracts supports the presence of am- 
phiphysin heterodirners (4) and indicates that 
amphiphysin dephosphorylation does not affect 
heterodimer stability. A GST fusion protein 
comprising the first 150 amino acids of am- 
phiphysin 1 bound to both amphiphysins 1 and 
2 in an overlay assay (Fig. 2B), indicating that 
dimerization is mediated by this coiled-coil re- 
gion of amphiphysin; this suggests the possibil- 
ity that both heterodimers and homodimers are 
present. Binding was not affected by phospho- 
rylation (Fig. 2B). 

To determine whether the phosphoryl- 

ation site or sites that affect binding of dy- 
namin 1 and synaptojanin 1 to amphiphysin 
were on these proteins or on amphiphysin, we 
incubated brain extracts in the presence of 
ATP and the phosphatase inhibitor mixture 
and then loaded them on a GST-amphiphysin 
1 fusion protein column (7) after we termi- 
nated the kinase reactions by adding EDTA. 
In both cases, binding of dynamin 1 and 
synaptojanin 1 to the SH3 domain of am- 
phiphysin 1 was significantly reduced by pre- 
vious exposure of the cytosol to ATP (Fig. 
2C) (24). Thus, phosphorylation of dynamin 
1 and synaptojanin 1 regulates their interac- 
tion with amphiphysin. 

We next tested whether clathrin and AP-2 
from control and ATP-pretreated cytosol (21) 
bound differently to recombinant amphiphysin. 
In preliminary aflinity-chromatography experi- 
ments the AP-2 binding site was localized to a 
region (amino acids 322 to 375 of human am- 
phiphysin 1) distinct from, but,-adjacent to, the 
clathrin binding site (amino acids 347 to 405 of 
human amphiphysin 1) (11) (Fig. 2D). There- 
fore, we used a GST fusion protein of an am- 
phiphysin 1 fragment comprising both regions 
(amino acids 262 to 435 of human amphiphysin 
1) for these experiments (Fig. 2E). Binding of 
clathrin and a- and P-adaptin was very similar 
in the two conditions (Fig. 2F), arguing against 

0 -  - - dynamin 1 

L - - R-sdaptln 

Fig. 3. Effect of protein kinase and protein phosphatase inhibitors on coprecipitation of dynamin 
1 and AP-2 (P-adaptin subunit) with amphiphysin 1. Monoclonal antibodies directed against 
amphiphysin 1 were used to  generate irnrnunoprecipitates from rat brain cytosol (22), which had 
been preincubated with ATP, a phosphatase inhibitor mixture, and the compounds indicated. 
lmmunoprecipitates were reacted by protein blotting (A) and band intensity was quantified by a 
Phosphorlmager (B). (C) Monoclonal antibodies directed against amphiphysin 1 were used t o  
generate immunoprecipitates from rat brain cytosol incubated in the presence of ATP and 
phosphatase inhibitors as indicated. lmmunoprecipitates were reacted by protein blotting with 
antibody t o  amphiphysin 2 (upper) and the relative amount of coprecipitated dynamin 1 was 
quantified with a Phosphorlmager (lower). Note upper shift of the amphiphysin 2 band correlating 
with the presence of phosphatase inhibitors. Similar results were obtained for arnphiphysin 1. 

an effect of clathrin and AP-2 phosphorylation 
on their binding to amphiphysin. The phospho- 
rylation of amphiphysin, however, was found to 
affect its binding to AP-2. When a rat brain 
cytosolic extract was affinity-purified on a GST 
fusion protein comprising the appendage do- 
main of a-adaptin (2+that is, the amphiphy- 
sin binding portion of AP-2-the phosphoryl- 
ated forms of both amphiphysin 1 and 2 were 
retained less efficiently than the corresponding 
dephosphorylated forms (Fig. 2, F and G). 

Thus, complex formation of a multimeric 
complex between various endocytic proteins 
is inhibited by phosphorylation (26). We ex- 
plored the effect of protein kinase inhibitors 
on coprecipitation with amphiphysin 1 of dy- 
namin 1 and AP-2 (27). The general protein 
kinase inhibitor K252a (28) strongly inhibit- 
ed the effect of ATP on both coprecipitation 
and amphiphysin mobility (Fig. 3, A and B). 
The kinase or kinases responsible for these 
effects remain to be identified. 

Dynamin 1, synaptojanin 1, and the am- 
phiphysins undergo stimulation-dependent de- 
phosphorylation in nerve terminals, and de- 
phosphorylation is blocked by inhibitors of 
the Ca2+/calmodulin-dependent phosphatase 
calcineurin (4, 20, 21). In the absence of 
phosphatase inhibitors, ATP was not suffi- 
cient to produce a significant mobility shift of 
the amphiphysins in SDS-polyacrylamide gel 
electrophoresis (SDS-PAGE) and a corre- 
sponding inhibition of the binding of dy- 
namin to amphiphysin (Fig. 3C). The cal- 
cineurin inhibitor cyclosporin A, however, 
enhanced the shift and decreased the copre- 

Fig. 4. The amphiphysin 1 region containing the 
AP-2 and clathrin binding sites has a dominant- 
negative effect on clathrin-mediated endocytosis. 
Double immunofluore~ence of Chinese hamster 
ovary cells transfected with an amphiphysin 1 
fragment (amino acids 250 to  588) comprising 
the clathrin and AP-2 binding site (37) [B + C 
region as defined in (6)]. Cells were transiently 
transfected with the B + C region of amphiphysin 
1 and then incubated with CY3-labeled trans- 
ferrin for 20 min. After fixation cells were pro- 
cessed for amphiphysin 1 and clathrin irnmuno- 
fluorescence. Magnification, X400. 
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cipitation of dynamin with amphiphysin. An 
even greater effect on both parameters was 
observed if two other phosphatase inhibitors, 
okadaic acid and vanadate, were added to 
cyclosporin A, which suggests an involve­
ment of other phosphatases in addition to 
calcineurin (Fig. 3C). 

Thus, amphiphysin appears to play a key 
role as a regulated linker connecting AP-2/ 
clathrin to dynamin 1 and synaptojanin 1. High-
level expression of the SH3 domain of am­
phiphysin, which binds dynamin and synapto­
janin 1, has dominant negative effects on clath-
rin-mediated endocytosis (9). A similar effect 
woulcĵ be expected for overexpression of the 
amphiphysin region that contains the AP-2 and 
clathrin binding sites. Accordingly, transfection 
of an amphiphysin 1 construct comprising ami­
no acids 250 to 588 (B and C domains) (31) in 
Chinese hamster ovary cells blocked receptor-
mediated uptake of transferrin (Fig. 4, A and 
B). Furthermore, expression of this construct 
produced a change of the clathrin immunostain-
ing from the typical punctate to a diffuse pattern 
(Fig. 4, C and D), consistent with a disruption 
of clathrin assembly. 

Phosphorylation and dephosphorylation re­
actions play an important role in regulation of 
the endocytic machinery. Ca2+-dependent de­
phosphorylation of endocytic proteins (4, 20, 
21) after nerve terminal depolarization may 
prime the nerve terminal for efficient compen­
satory endocytosis after a burst of exocytosis. 
Ca2+-dependent dephosphorylation may un­
derlie some of the reported positive effects of 
Ca2+ on synaptic vesicle endocytosis (32) and 
a dephosphorylation-dependent assembly of cy-
tosolic endocytic coat proteins may explain the 
increased number of clathrin cages and clathrin-
coated pits observed in ATP-depleted cells 
(33). In nonneuronal cells AP-2 assembly into 
clathrin coats correlates with its dephosphoryl­
ation (19). It is possible that a general property 
of proteins involved in endocytosis is to under­
go constitutive phosphorylation and to assem­
ble in the dephosphorylated state. 
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