
mm. Using these data, we obtain from Fig. 4 22. , Mat. Sci. Forum 7, 145 (1986). 3.8693. C(0.4) = 4.0041, as compared t o  Dodson's 

cooling rate -2 to 4 WMa, which is in 23. J. Ganguly, in preparation. The geometric parameter (22) G = 4.0066. 

excellent agreement with that of -2 WMa A in the expression of mean T, in Dodson's (21) eqn. 24. S. W. J. Clement, W. Compston, G. Newstead, in 
23 equals exp(G), where G is the spatially averaged Proceedings International Secondary Ion Mass Spec- 

deduced inde~endent l~ '  (3). very value of the closure function G(x) of his (22) eqn. 20. trometry Conference, A. Bennighoven, Ed. (Wiley, 
cooled rocks, the retrieved cooling rate is In deriving the expression for C(x), Dodson (22) as- Munster, Germany, 1991), pp. 289-293. 

quite insensitive to errors in At. However, for sumed that the dimensionless quantity M >> 1, which 2 5  E. K. Zinner and G Crozaz, int. J. Mass Spectrom Ion 
implies removal of the composition of the crystal 69, 17 (1 986). 

rocks (for from its initial composition in all parts. The closure 26. We thank M. H. Dodson and J. Ruiz for helpful dis- 
dT/dt > 50 WLta for To = 800"C), small function has been modified so that it is valid for any cussions and for providing some of the isotope- 
error in At leads to verv large error in dTidt. arbitrary value of M, numerically evaluated as a enriched solutions, respectively. This research was 

2 'd 

l-hus, for these rocks, it would be more ap- f u n c t i o k f  the normalized radial bistance from the supported by U.S. National Science Foundation grant 
center of a grain, and then spatially averaged t o  yield EAR 9418941 and EAR 9805232. 

propriate to define a minimum cooling rate, averaee closure function versus M for examole G(M a r \ 

taklng into account the error in At = 0001) = 09018, C(O01) = 2 7603, G(O 10) = 30 Aprll 1998 accepted 30 June 1998 
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Decoupled Temporal Patterns 
of Evolution and Ecology in Two 

Post-Paleozoic Clades 
Frank K. McKinney," Scott Lidgard, J. John Sepkoski Jr., 

Paul D. Taylor 

Counts of taxonomic diversity are the prevailing standards for documenting 
large-scale patterns of evolution in the fossil record. However, the secular 
pattern of relative ecological importance between the bryozoan clades Cy- 
clostomata and Cheilostomata is not reflected fully in compilations of generic 
diversity or within-fauna species richness, and the delayed ecological recovery 
of the Cheilostomata after the mass extinction at the Cretaceous-Tertiary 
boundary is missed entirely. These observations demonstrate that evolutionary 
success and ecological dominance can be decoupled and profoundly different, 
even over tens of millions of years. 

Taxonomic diversity, or richness (1, 2), is the 
current paradigm used to describe how Earth's 
biota has changed over time. An alternative 
approach examines patterns in biological activ- 
ity or habitat structure (3, 4), but this has rarely 
been associated with taxonomic diversity. Here, 
we describe a different approach. We compiled 
data on skeletal mass of two coexisting marine 
bryozoan clades (Cyclostomata and Cheilosto- 
mata) to measme one aspect of relative local 
ecological dominance over geological time (5). 
Dominance is usually measured by the abun- 
dance of a group of organisms relative to co- 
occurring groups, or less often by the relative 
effect of a group on energy flow within a 
community (6). Species are not equally abun- 
dant or important energetically, so lists of spe- 
cies alone may not reflect dominance. More- 
over, despite calls for recognizing the impor- 
tance of abundance in large-scale evolutionary 

pattelns (7) ,  there have been few applications 
(4, 8).  

We compared biyozoan abundance data 
spanning the past 150 million years with two 
measures of taxoilomic diversity to assess the 
degree of correspondence between the evolu- 
tionary success and ecological importance, or 
dominance, of the two clades on continental 
shelves, where they have similar ecological 
distributions (9). During the past 150 lnillion 
years, cheilostome bryozoans radiated to an 
extent comparable with the euteleost fishes, 
neogastropods, and echinoids (2) ,  whereas 
diversification of cyclostome bryozoans was 
arrested. 

Cyclostome bryozoans survived the severe 
crises at the end-Per~nian and Triassic mass 
extinctions that removed the other stenolae- 
mate blyozoan clades that had much higher 
Paleozoic diversities (10). Cyclostolne gen- 
era increased from four in the Early Jurassic 
[Hettangian; 206 to 202 lnillion years ago 
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cene (Thanetian; 61 to 55 Ma). Cheilostome 
diversity recovered during the Eocene, and 
the number of genera exceeded that of the 
Maastrichtian by mid-Eocene (Lutetian; 49 to 
41 Ma). Cyclostome generic diversity; on the 
other hand. never rebounded after the Paleo- 
cene. On the basis of global generic diversity, 
the later originating cheilostomes had be- 
come as species rich as cyclostomes by the 
Maastrichtian, and through the Cenozoic the 
proportion of cheilostome species continued 
to increase (Figs. 1 and 2). 

To assess the ecological consequences of 
changing diversity, we determined the skele- 
tal niGs of cyclostome and cheilostome bryo- 
zoans for samples from 70 Jurassic-to-Holo- 
cene marine contiilental shelf deposits (11). 
The sampled faunas were mostly from Eu- 
rope and eastern Yorth America and have 
about the same geographic concentration as 
the taxonomic databases (12, 13). Despite the 
noise potentially introduced by taphonomic 
bias ( l l ) ,  a distinct temporal pattem in rela- 
tive skeletal mass of cyclostomes and chei- 
lostomes emerges that cannot be attributed to 

I 
I 

0 
C 

Tertiary 1 
Fig. 1. Early Cretaceous to Quaternary global 
generic diversity of the bryozoan clades Cyclo- 
stomata and Cheilostomata. 

s ~retaceous 1 Tertiary 
I 
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Fig. 2. The proportion of global bryozoan ge- 
neric diversity constituted by cyclostomes from 
Early Cretaceous to Quaternary. 

local taphonomic effects. 
The within-fauna skeletal mass of cyclo- 

stomes declined steeply relative to the skeletal 
mass of cheilostomes from the mid- through 
Late Cretaceous (Fig. 3) so that cycloston~es 
constituted an average of only 28% of total 
bryozoan skeletal mass by the Maastrichtian. 
However, relative mass abundance reversed 
abruptly to 72% cyclostomes immediately 
above the K-T boundary, and in terms of skel- 
etal mass the cyclostomes dominated to the end 
of the Danian (65 to 61 Ma) (14). Thanetian 
through Ypresian (Early Eocene; 55 to 49 Ma) 
faunas are underrepresented in our data. 
Therefore, we cannot distinguish adequately 
whether the Danian cyclostome peak (i) is a 
relatively short-lived spike of abundance 
(about 4 million years), similar to but of 
greater duration than abundance spikes seen 
in ferns and some foraminifers in the recov- 

Fig. 3. Cretaceous and Cenozoic (Tertiary-Qua- 
ternary) within-fauna relative skeletal mass of 
the bryozoan clades Cyclostomata and Cheilo- 
stomata, plotted as percent cyclostomes. The 
moving average curves were fitted by a dis- 
tance-weighted least squares method (79). 

Fig. 4. Cretaceous and Cenozoic (Tertiary-Qua- 
ternary) curves for within-fauna relative spe- 
cies richness of cyclostomes and cheilostomes, 
plotted as percent cyclostomes. The moving 
average curves were fitted by a distance- 
weighted least squares method (79). 

ery biota (15), or whether ( ~ i )  the ecological 
replacement of cycloston~es by cheilostomes 
was reset such that tens of millions of years 
were required for cheilostomes to regain their 
Late Cretaceous ecological dominance over 
cyclostomes. Regardless, the long-term pat- 
tern in relative skeletal mass of cheilostomes 
and cyclostomes departs substant~ally from 
the generic diversity pattern (Fig. 2) and from 
patterns at higher taxonomic levels (13). 

Mean within-fauna species richness of 
both cheilostomes and cyclostomes declined 
from the Late Cretaceous into the Paleocene 
(13). The decline in species richness of cy- 
clostomes appears to have begun in the Cen- 
omanian (99 to 93 Ma), whereas cheilo- 
stomes reached maximum species richness in 
the Maastrichtian and then declined at the 
K-T boundary. SVhen the cheilostomes began 
to diversify in the mid-Cretaceous, the ratio 
of cyclostome to cheilostome species in local 
communities began a long-term decline that 
lasted across the K-T boundary through to the 
early Oligocene (Fig. 4). 

The two measures of taxonomic diversity 
summarized above differ in detail but both im- 
ply that the cheilostolnes were more resilient 
than the cyclostomes during the end-Cretaceous 
crisis. Among total calcified bryozoans the 
global proportion of cyclostome genera de- 
clined slightly from the Maastrichtian (-50%) 
to the Danian (-46%), and the proportion of 
within-fauna cyclostolne species richness de- 
clined from -37% in the Maastrichtian to 
-30% in the Danian. The abrupt Danian 
increase in relative skeletal mass of cyclo- 
stomes contrasts sharply with these trends in 
global generic and within-fauna species di- 
versities. This Danian spike could not have 
been determined from taxonomic databases, 
and it demonstrates that macroecological and 
macroevolutionary patterns can be decoupled 
even within a well-delimited suite of ecolo- 
gies, such as the overlapping ecological range 
occupied by both cyclostome and cheilo- 
stome bryozoans on marine shelves. This is 
not unlike some patterns of global morpho- 
logical disparity relative to taxonomic diver- 
sity (1 6 ) .  

The overall Mesozoic and Cenozoic histo- 
ries of relative within-fauna species richness 
and skeletal mass of cycloston~es and cheilo- 
stomes also demonstrate that macroevolution- 
ary and macroecological patterns can corre- 
spond qualitatively but differ quantitatively. As 
shown in Figs. 3 and 4, the relative skeletal 
mass of cyclostomes declined much more pre- 
cipitously than did relative species richness 
through the Late Cretaceous and again during 
the post-Paleocene after the Danian spike in 
cyclostome skeletal mass. The lack of quanti- 
tative correspondence of the within-fauna spe- 
cies richness and skeletal mass curves through 
geologic time indicates that, in the absence of 
major peitt~rbations, there is a long-term trend 
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colony sizes within cheilostomes (1  7): a greater 
number of colonies per cheilostome species, or 
both. 

These data suggest that multiple mea- 
sures of biotic change through time are 
necessary for a rich understanding of bio- 
spheric evolution. As in conteinporary bi- 
otic communities, taxonomic diversity cap- 
tures only limited aspects of the complexity 
of the biota (18) .  Multiple measures of 
biotic systems.provide greater insight into 
history and processes and a better basis for 
predicting future biodiversity. 

ecologically dominant taxa. Nonetheless, small colo- 
nies of cyclostomes and cheilostomes may be numer- 
ous in some environments (E. HBkansson, personal 
communication). Our data were supplemented by 
data in 0. Berthelsen, Danmarks Geol. Unders. 83, 1 
(1962) and A. H. Cheetham, Smithsonian Contrib. 
Paleobiol. 6, 1 (1971). Some variation in the data 
inevitably results from variable amounts of cement 
or of matrix or shell fragments. Cyclostomes tend t o  
have thinner walls than do cheilostomes, and raw 
cheilostome mass was weighted by 1.26 on the basis 
of a thin-section determination of the ratio of skel- 
eton t o  cement plus adherent material in control sam- 
ples [33 cheilostomes (?? = 0.62, SD = 0.147) and 35 
cyclostomes (R = 0.51, SD = 0.151) from four repre- 
sentative collections]. Additional "noise" in the data 
may be due t o  different taphonomic responses of cy- 
clostome and cheilostome bryozoans in different envi- 
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In Situ Observations of a 
High-Pressure Phase of H,O Ice 

I-Ming Chou," Jennifer C. Blank,? Alexander F. Concharov, 
Ho-kwang Mao, Russell J. Heinley 

A previously unknown solid phase of H 2 0  has been identified by its peculiar 
growth patterns, distinct pressure-temperature melting relations, and vibra- 
tional Raman spectra. Morphologies of ice crystals and their pressure-temper- 
ature melting relations were directly observed in a hydrothermal diamond-anvil 
cell for H 2 0  bulk densities between 1203 and 1257 kilograms per cubic meter 
at temperatures between -10" and 50°C. Under these conditions, four different 
ice forms were observed to melt: two stable phases, ice V and ice VI, and two 
metastable phases, ice IV and the new ice phase. The Raman spectra and crystal 
morphology are consistent with a disordered anisotropic structure with some 
similarities to ice VI. 

The manifold ways in which the water mol- 
ecules may link through hydrogen bonding 
give rise to a remarkably rich phase diagram 
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(1-5). Enhancing this complexity is the exis- 
tence of both proton-ordered and -disordered 
forms as well as metastable crystalline and 
amorphous phases (3, 6 ) .  Though evidence 
for additional phases in the system has been 
obtained in the past [for example, ( 7 ) ] ,  infor- 
mation about them has been very sparse, if 
not controversial, because previous studies 
have relied principally on quench techniques 
or limited in situ probes (7-10). Here we 
document the existence of another H,O phase 
from in situ microscopy and Raman spectros- 
copy at 0.7 to 1.2 GPa. The phase exhibits an 
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