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Pioneer Axon Guidance by 
UNC-129, a C. elegans TGF-P 

Antonio Colavita, Srikant Krishna, Hong Zheng, 
Richard W. Padgett, Joseph G. Culotti* 

The unc-729 gene, like the unc-6 netrin gene, is required t o  guide pioneer 
motoraxons along the dorsoventral axis of Caenorhabditis elegans. unc-729 
encodes a member of the transforming growth factor-@ (TGF-P) superfamily 
of secreted signaling molecules and is expressed in dorsal, but not ventral, rows 
of body wall muscles. Ectopic expression of UNC-129 from ventral body wall 
muscle disrupts growth cone and cell migrations that normally occur along the 
dorsoventral axis. Thus, UNC-129 mediates expression of dorsoventral polarity 
information required for axon guidance and guided cell migrations in  C. elegans. 

Axon guidance along the dorsoventral (DIV) 
axis of animals of diverse phyla involves 
secreted, laminin-related, UNC-hlnetrin guid- 
ance cues (1). The signaling pathways acti- 
vated by these molecules require the UNC-5 
and UNC-40lDCC transmembrane receptor 
families (2--4). In C. eleguns, mutations in 
lrnc-129 (5) cause defects in the dorsally 
oriented trajectories of motoraxons that re- 
semble those present in unc-5, unc-6, and 
unc-40 mutants (5, 6). 

A 6.5-lb genomic subclone of cosmid 
C53D6 was able to rescue the uncoordinated 
phenotype of unc-129 mutants after germline 
transformation (7, 8)  (Fig. 1A). Sequence anal- 
ysis by the C. elegilns genome-sequencing con- 
sortium (9) revealed a single open reading 
frame on this fragment that encodes a protein 
related to the TGF-P superfamily. The corre- 
sponding 1.5-kb cDNA (1 0) includes 5 exons. 
34 base pairs (bp) of 5' untranslated region 
(UTK), and 281 bp of 3' UTR and is predicted 
to encode a protein of 407 amino acids (Fig. 

1B). Northenl (RNA) analysis of wild-type 
mRNA revealed a single transcript (11) consis- 
tent with the size of the cDNA. The 6.5-kb 
rescuing genomic fragment includes 3 kb of 5' 
promoter sequence. A rninigene containing 4.5 
ltb of 5' promoter sequence fused to the urzc- 
129 cDNA was able to rescue the phenotype of 
tmc-129 mutants, indicating that there are no 
essential regulatoly elements in introns or the 3' 
sequence (1 2). 

UNC-129 shares features with the TGF-P 
superfamily, including a signal sequence, a 
prodomain, and a COOH-terminal region that 
contains seven conserved cysteines (13). The 
UNC-129 COOH-terminal sequence identity 
ranges from 33% with human BMP-7 to 24% 
with TGF-P2. Thus, L~IZC-129 likely repre- 
sents a subfamily of the TGF-@ superfamily. 

Sequence analysis revealed the absence of 
residues in UNC-129 that would be expected 
between the a-helical region and P sheet of 
TGF-@ molecules (Fig. 1C) (14). This inter- 
domain region forms a p turn with a protrnd- 
ing loop accessible to solvent. The three- 
dimensional structures of TGF-P1 and TGF- 
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Fig. 1. Positional cloning and pri- 
mary sequence of unc-729. (A) 
Cosmids spanning the mes-6- 
fem-3 interval were assayed for 
unc-729 rescuing activity (+ or 
-). The rescuing region was de- 
limited by testing genomic sub- 
clones and an unc-729 minigene. 
Cenomic structure is indicated by 
boxed regions, black (coding), 
white (3' UTR). Restriction sites: 
c, Cla I; x, Xba I; s, Sma I; b, Bst Ell; 
bg, Bgl II; a, Ahd I; bm, Bsp MI. (B) 
Peptide sequence of UNC-129 with 
putative signal sequence (under- 
lined), putative cleavage site 
(boxed), and conserved cysteines 
(highlighted in bold). Amino acid 
substitutions in unc-729 alleles 
are indicated above the sequence 
(arrows). Asterisks indicate stop 
codons. (C) Comparison of the 
mature region of UNC-129 with 
members of the TCF-$ superfam- 
ily; DPP, 60A (Drosophila); DAF-7 
(C. elegans); BMP-2 (chicken); 
Nodal (mouse); BMP-7. MIS, CDF- 
1. TCF-$2 (human). The interdo- 
main region predicted to be ab- 
sent from UNC-129 is boxed 
(unc-729 is gene C53D6.2, acces- 
sion number AF029887). Abbrevi- 
ations for the amino acid residues 

m 
m a  

are as follows: A, Ala; C, Cys; D, 
UP-T Asp; E, Clu; F, Phe; C, Cly; H, His; 
6% .)= I, Ile; K, Lys; L, Leu; M, Met; N, Asn; 
.I. 
--I 

P, Pro; Q, Cln; R, Arg; 5, Ser; T, 
m- pa 
--7 

Thr; V, Val; W, Trp; and Y, Tyr. 
mc-ln 

have been implicated in control of d a m  larva 
formation, male tail patterning, and body size 
(1 7-19). These functions appear unaffected in 
unc-129 null mutants. Rather, unc-129 muta- 
tions disrupt axon guidance. No other pattern- 
ing or morphological defects were identified. 
ev557 and ev554 mutations, which introduce 
stop codons (Fig. 1B) (20), cause axon guid- 
ance defects with higher penetrance than the 
h p o r p h ,  ev566 (5). Mutations in kuown 
components of TGF-P signaling pathways did 
not cause any axon guidance defects in the DA 
(n = 120) or DB (n = 120) classes of motor- 
neurons (21). Alleles tested were daf-l(m213ts) 
and daf-4(e1364ts), which are genes encoding 
type I and type 11 serine-&nine kinase recep 
tors, respectively (1 7, 18). 

We assessed the expression pattern of unc- 
129 using unc-l29::& lnnsaiptional reporkr 
genes (22) expressed h m  transgenic arrays 
(Fig. 2, A to E). Promoter activity was first 
detected at late gastrulation stage in cells that 
include descendants of the AB and E lineages. 
Expression continues through embryonic elon- 
gation in some of these cells. About 450 to 520 
min after first cleavage, expression was ob- 
served in a subset of cells in the head, including 
one ventral muscle, and in all dorsal body wall 
muscles. Between 520 min and hatching, green 

fluorescent protein (GFP) expmsion was de- 
tected in the DA and DB classes of motomeu- 
rons, excluding DA8 and DA9. This pattern of 
expression persisted into the adult stage. In 
addition, expression was detected in a subset of 
cells in the head and in pharyngeal neurons and 
muscle. Of these, only interneuron I4 and mus- 
cle m8 were unambiguously identified. In late 
larval stages, expression was detected in the 
pmatheca, seam cells, CAN, PDE socket, 
and four cells that encircle the vulva. Among 
cells that express unc-129 promoter activity, 
only DA and DB motorneurons display mor- 
phological or axon guidance defects. 

Deletion analysis revealed potions of the 
unc-129 5' regulatory region that promoted 
predominantly muscle- or motomeuron-spe- 
cific GFP expression (22, 23) (Fig. 2, F and 
G). These truncated regulatory regions were 
used to express wild-type unc-129 coding 
sequence in either the dorsal muscle or the 
DA and DB motorneurons to test for its 
ability to rescue the unc-129 mutant pheno- 
type. UNC-129 expression from the dorsal 
body wall muscle-specific promoter, but not 
from the motomeuron-specific promoter, res- 
cued the uncoordinated movement and axon 
guidance defects of unc-129 mutants (23) 
(Fig. 2H). This result suggests that wild-type 

UNC-129 expressed by dorsal muscle acts 
cell nonautonomously to guide the circumfer- 
ential migrations of pioneer axons. 

The timing of unc-l29::gfi, expression 
also suggests that unc-129 mediates axon 
guidance. unc-129 is expressed in dorsal 
muscle at the twofold stage of embryogenesis 
(450 to 520 min) when DA, DB, and DD 
motoraxons grow (480 to 515 min) toward 
the dorsal midline (24). unc-129 is also ex- 
pressed in dorsal muscle postembryonically 
as VD motoraxons grow toward the dorsal 
midline. 

To fiuther investigate whether dorsal- 
specific expression of unc-129 is important 
for its function, we expressed a functional 
hemagglutinin (HA)-tagged UNC- 129 (25) 
in both dorsal and ventral rows of body 
wall muscles (verified by imrnunostaining) 
under the control of the muscle-specific 
myo-3 (myosin) promoter (26). We exam- 
ined axon morphologies of the DA and DB 
neurons in independent lines of ectopic 
UNC- 129 -expressing animals using the 
neuron-specific GFP fusion to the unc-129 
promoter. Wild-type worms transgenic for 
myo-3::unc-129HA displayed uncoordinat- 
ed locomotory defects and axon guidance 
defects in the DA and DB neurons that 
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Fig. 2 (Left). Expression pattern and cell nonautonomous activity of unc- 729. 
(A) Comparison of unc-729::gfp transcriptional reporters used in this study 
with unc-729 rescuing genomic DNA. (B to E) unc-729::gfp expression 
pattern at -280 min (B), -430 min (C), -550 min (D) postcleavage, and in 
LI larvae (E). Expression in dorsal body wall muscle [arrowheads in (D) and 
(E)] is observed before DA and DB expression. CFP expression vectors used 
in (B) to (D) contain a nuclear localization signal. (F and C)  unc729::gfp 
reporter derivatives expressed predominantly in DA and DB motorneurons 
(F) (arrow indicates dorsal nerve cord) and dorsal body wall muscle in L1 
larvae (C). (H) unc- 729 expression from the dorsal muscle-specific promoter 
is sufficient to completely rescue the unc-729 phenotype. Restriction sites as 
in Fig. 1. Bar, 10 pm. Fig. 3 (right). Ectopic expression of unc-729 in 
dorsal and ventral body wall muscle phenocopies the axon guidance defects 
of an unc-729 null mutant. DA and DB neurons are visualized in L4 stage 
animals through use of the neuronal unc-729::gfp reporter. Motoraxons are 
misrouted longitudinally at lateral positions (arrows). (A) Wild type; (B) 
unc-729(ev557); and (C) unc-729(+) animal carrying an integrated 
myo-3::unc- 729HA transgene. Arrowheads indicate row of lateral seam cells. 
Bar, 50 pm. 

resembled the defects observed in unc-129 
mutants (Fig. 3), but with lower penetrance 
for the DA than for the DB class (Fig. 4A). 

Ectopic unc-129 expression also causes 
axon guidance and cell migration errors that 
are not found in unc-129 mutants. We as- 
sessed ventral axon guidance by examining 
AVM and PVM mechanosensory neurons us- 
ing a mec-4::gfp reporter. In both wild-type 
and unc-129 mutants, these neurons are lo- 
cated at lateral positions and send a single 
process toward the ventral nerve cord. In all 
myo-3::unc-129HA transgenic lines, howev- 
er, many AVM and PVM axons are 
misrouted along longitudinal trajectories 
(Fig. 4B). Similar ventral guidance defects 
are also found in unc-6 and unc-40 mutants 
(6). Therefore, unc-129 expression from all 

body wall muscle perturbs guidance of axon 
growth cones in both dorsal and ventral di- 
rections. We also observed defects in the 
dorsalward migrations of the distal tip cells 
(DTCs), which are mesodermal cells that nor- 
mally follow a U-shaped trajectory along the 
body wall (Fig. 4C). Similar DTC migration 
defects are present in unc-5, unc-6, and unc- 
40 mutants (6). Thus, spatially restricted ex- 
pression of unc-I29 promotes normal axon 
guidance and DTC migration (27). 

Any model of UNC-129 function must 
take into account its genetic interactions with 
the UNC-61netrin pathway, particularly 
UNC-5. The identification of unc-129 muta- 
tions as suppressors of ectopic UNC-5-in- 
duced growth cone guidance is consistent 
with either a direct role in the UNC-6lnetrin 

pathway or a role in a parallel pathway of 
related function. The nearly complete pen- 
etrance of axon guidance defects exhibited by 
unc-5 and unc-6 null mutants compared to the 
similar but milder defects in unc-129 null 
mutants (5) precludes the use of double-mu- 
tant analysis to distinguish between these 
possibilities. 

UNC-129 may act directly as a guidance 
cue that provides polarity information to mi- 
grating growth cones, or indirectly, by inducing 
neighboring cells to form a guidance cue. In 
principle, UNC-129 could affect expression of 
components of UNC-5 signaling. However, 
UNC- 129 does not affect transcription of unc-5, 
unc-6, or unc-40 as judged by examining ex- 
pression of unc-5::& (28), unc-40::gfp (3), 
and unc-6::HA (29) reporter genes in wild-type 
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Fig. 4. Ectopic expression of unc-729 in all body wall muscle causes axon guidance and cell 
migration defects. (A) DA and DB axon guidance defects in wild type, an unc-729 mutant, and three 
independent lines carrying integrated myo-3::unc-729HA transgenes. All strains are transgenic for 
the neuronal unc-729::gfp reporter. (B) Ventral guidance defects in the AVM and PVM neurons. 
Axons were scored as ventral guidance defective if AVM and PVM axons were misrouted 
longitudinally along the lateral hypodermis. All strains are transgenic for a mec-4::gfp reporter. (C) 
DTC dorsal migration defects in wild-type and unc-5 mutants expressing myo-3::unc-729HA 
transgenes. The myo-3 vector strain carries an extrachromosomal array containing the myo-3 
expression vector alone. Bars represent ?SD of a binomial distribution of the same sample size and 
observed mean. 

and zlnc-129(ev554) animals (30). Because 5. A. Colavita and J. C. Culotti, Dev. Biol. 194, 72 

none of the knorvn TGF-P receptors (including (lgg8). 
6. E M. Hedgecock, J. C. Culotti, D. H. Hall, Neuron 2 ,61  

DAF-1 and DAF-4) affect motoraxon guidance (1990\. 
\ ,  

and TGF-P or Smad mutants do not shear 7. C. C. Mello, J. M. Kramer, D. Stinchcomb, V. Ambros, 

uncoordinated phenotypes (1 7-19), are suggest EMBOJ. l o ,  3959 (Igg1). 
8. Standard germline transformation (7) was used t o  

that UNC-129 uses T G F - P  generate transgenic animals carrvine individual or - - - 
based mechanism to guide axons on the D;V pooled cosmids spanning the interval between mes-6 

axis in C. elegans. One possibility, suggested and 
9. R. Wilson et a/., Nature 368, 32 (1994). the finding that TGF-P bind 10, The primers 5'-CTAAAGTTAATCATACTCTGG and 5'- 

to TSP type I domains (31), is that UNC-129 ACATTTTTACTTTATCACTCC were used t o  a m ~ l i f v  r 2 

acts dire& on UNC-5 to enhance the abilitv of a 1-kb fragment that was used t o  probe a cDNA 

LWC-5 LWC-6-dependeIlt library in A-Zap. A full-length 1.5-kb cDNA was se- 
quenced on both strands wi th the use of overlapping 

cone repulsion (away fkom the ventral midline). ~r imers .  
Or, UNC-129 may function in a separate sig- 11. A Northern blot containing mRNA derived from 

 lal ling patharay that mediates motoraxon aM.ac- mixed-stage wild-type hermaphrodites was hybrid- 
ized wi th the full-length cDNA probe by standard 

tion to the dorsal midline. The latter model methods (z), 
vredicts that nlotoraxons would be simulta- 12. The unc-12'9 minigene was constructed bv subclon- 

neously repelled and attracted dorsally by op- 
posite gradients of LWC-6 and UNC-129, re- 
spectively (1 7, 18). The identification and lo- 
calization of additional LWC-129 signaling 
pathway compone~~ts should help to distinguish 
between these models. 
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