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wave speed, PCP precursors are  rarer 
than ScS precursors. Furthermore, varia- 
tions in compressional-wave speed are 
not necessarily correlated with variations 
in shear-wave speed, such that PCP pre- 
cursors may be absent when ScS precur- 
sors exist, and vice versa, in accordance 
with the observations. To produce the 
precursors, Liu et al. need to locally en- 
hance the wave-speed gradients, as illus- 
trated in the bottom panel of  the lower 
figure. This is justifiable, because exist- 
ing tomographic models are the result of 
a damped least squares inversion that un- 
derestimates the amplitudes and gradients 
of heterogeneity. 

Future tomographic inversions could use 
observations of precursors as additional con- 

straints on lower mantle structure. Of course, 
the actual picture is more complex. For ex- 
ample, over relatively short epicentral dis- 
tances, Schimmel and Paulssen (13)  report 
precursors to ScS that cannot be explained by 
large-scale heterogeneity. Perhaps these pre- 
cursors are produced by the same small-scale 
scatters that are needed to explain PKP pre- 
cursors ( I  I ) .  Further complications involve 
the existence of thin ( 4 0  km), ultra-low-ve- 
locity zones (14)  and anisotropy (15)  near 
the core-mantle boundary. These thin, slow 
regions at the base of the mantle are reminis- 
cent of the heterogeneous crust on top of the 
mantle. Are they a result of differentiation of 
the mantle, like the crust, or are they pro- 
duced by chemical interactions between the 
mantle and core? 
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Buried Spins in Slow Motion 
J. M. Kikkawa and D. D. Awschalom 

are now routinely made at the atomic level 
in ordered layers and clusters. This has fu- 
eled the advance of techniques for study- 
ing small-scale phenomena, and a vast 

T he past decade has seen tremendous 

number of probei have been introduced to 
examine topography, magnetization, ca- 
pacitance, and chemistry. Near-contact in- 
teractions between sample and probe have 
enabled scanning surface spectroscopies 
to explore atomic-scale systems, but often 
nanostructures lie buried within a particu- 
lar device, rendering them less accessible. 

Recently, interest in electronic spin po- 
larization embedded in solid-state systems 
has grown with a view toward creating 
spin transistors and spin memory devices 
and making use of spin coherence in semi- 
conductors for quantum computation. Ul- 
timately, the most demanding require- 
ments are imposed by quantum comput- 
ing, in which the interaction between spins 
must be dynamically controlled by the ex- 
perimenter and yet, somewhat ironically, 
the spins must be largely isolated from 
their environment ( I ) .  In some cases, how- 
ever, studying the virtues of a given spin 
system can be a tricky matter. On page 
686 of this issue, Kuzma et al. use a clever 
method to study the spin polarization of a 

refinement in nanofabrication, as  
semiconducting and metallic systems 
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plied perpendicular to the electron gas com- 
pletely changes its spectrum of excitation 
modes. Electrons fall into quantized energy 
levels known as  Landau levels, and the 
number of levels occupied by the electron 
gas as the temperature approaches absolute 
zero is known as the filling factor v. Re- 
searchers have found that when v is a frac- 
tion such as 113, charge carriers in these 
systems are best described not as simple 
electrons but rather as many-body excita- 
tions that, although constructed from elec- 
tronic states, lose the electron's fermionic 
character (3). Their spin polarization is an 
important quantity that sheds light on this 
many-body system but until recently has 
been difficult to measure because the sys- 
tem must remain at millikelvin tempera- 
tures at which conventional optical probes 
can heat the electron gas. Using a site-se- 
lective nuclear magnetic resonance tech- 
nique (2) ,  Kuzma et al. discovered several 
unexpected properties of this exotic system. 

The authors studied an electron gas that 
accumulates in the GaAs quantum well 
layers of an AlGaAsJGaAs semiconductor 
superlattice. Because there is a hyperfine 
interaction between conduction electron 
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Spin control. The sample is brought into the v 
= 113 regime by lowering its temperature t o  as 
low as 300 mK and applying a perpendicular 
magnetic field. (A) A radio frequency pulse ran- 
domizes the nuclear spins, after which (8) the 
electronic polarization is optically pumped by 
circularly polarized light. The circular polariza- 
t ion of the light is converted into electron spin. 
(C) During this process, the hyperfine interac- 
t ion polarizes nuclei that are in contact wi th 
the electron gas (shaded region), and after op- 
tical pumping these remain polarized. (D) The 
gas cools back down t o  its base temperature 
and regains its equilibrium properties, at which 
time a radio frequency tipping pulse is applied 
t o  the nuclear spins, initiating their precession. 
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