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Inactivation of a 
Serotonin-Gated Ion Channel by 

a Polypeptide Toxin from 
Marine Snails 
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The venom of predatory marine snails is a rich source of natural products that 
act on specific receptors and ion channels within the mammalian nervous 
system. A 41-amino acid peptide, o-conotoxin GVIIIA, was purified on the basis 
of its ability t o  inactivate the 5-HT, receptor, an excitatory serotonin-gated ion 
channel. a-Conotoxin contains a brominated tryptophan residue, which may be 
important for peptide activity because the endogenous ligand for the 5-HT, 
receptor is a hydroxylated derivative of tryptophan. a-Conotoxin inactivates 
the 5-HT, receptor through competitive antagonism and is a highly selective 
inhibitor of this receptor. Serotonin receptors can now be included among the 
molecular targets of natural polypeptide neurotoxins. 

Molecular targets of natural polypeptide newo- families ( I ) .  An important group of neurotrans- 
toxins include neurotransmitter receptors and mitter receptors that seems to have been exclud- 
voltage-gated ion channels fro111 Inany different ed as a toxin target is the large family of recep- 
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tors for which serotonin [5-hydroxq.hyptamine 
(5-HT)] is the endogenous agonist. Serotonin 
~nodulates many processes in mammalian pe- 
ripheral and central nen70us systems through its 
interactions with at least 14 receptor subtypes, 
all but one of whlch are G protein (heterotri- 
meric GTP-binding protein~oupled (2). The 
5-HT, subtype is the exception because it is a 
ligand-gated ion channel that shares functional 
and structural si~nilarities with nicotinic acetyl- 
choline receptors (3: 4). F~mctional cDNA 
clones encoding defu~ed serotonin receptor sub- 
types were used to selectively screen for and 
purifq. bioactive toxins through electrophysio- 
logical assays. The venom of marine snails was 

.-used for this search, because these organisms 
produce a vast xray of small sn-ucturally con- 
strained peptides that rapidly inlmobilize prey 
by targeting G protein-coupled receptors and 
ligand- or voltage-gated ion channels (1: 5) .  

Cmde venom exnacts from several C o n ~ o  
species were tested for ther ability to block 
serotonm-activated cLureilts in Xeir'op~rs oocytes 
expressing recombinant 5-HT, receptors (6 ) .  
Venoin from Con~rs geographtrs prod~~ced po- 
tent and specific 5-HT, channel inhibition at 
0.25 m g h l  (Fig. 1A). This effect was observed 
in three independent C. geographers venom 
preparations, one of which was fractionated by 
reverse-phase high-pei-formance liquid chroma- 
tography (HPLC) to effect pulification of the 
active component (Fig. 1B: left) (7). Chemical 
sequencing (8) and mass spectrometry (9) were 
used to characterize the isolated intact toxin. 
The 5-HT, receptor-inactivating peptide was 
41 amino acids long, making it the largest 
Conzrs peptide thus far characterized (Fig. 1C). 
The peptide had an amidated COOH-terminus 
and contained 10 cysteine residues that, based 
on the obsen~ed intact mass, fonned five disul- 
fide bonds. Conotoxin peptides are grouped 
into fanlilies according to their disulfide-bond- 
ing pattern and their receptor target. Because 
the 5-HT, receptor-inactivating peptide has a 
unique molecular target and contains five 
disulfide bonds, it defines a novel family of 
conotoxlns and was thus nained GVIIIA 
a-conotoxin. The amino acid co~nposition 
of the peptide is notable for the abundance 
of glycines and threonines and the absence 
of any acidic residues (having a predicted 
isoelectric point of 11.8). Chemical se- 
quence analysis did not reveal a standard or 
cominonly modified amino acid at position 
34. Mass spectrometry identified this resi- 
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due as a bromotryptophan, a highly unusual 
posttra~lslatiollal modificatioll found in 
only three other naturally occurring pep- 
tides, all from Conus snails (10). These 
peptides, and   no st bromotryptophan-con- 
taining small organic molecules of marine 
origin, are brominated at the 6' position on 
the tryptophan moiety. It is probable that 
the a-conotoxin peptide is also brominated at 
this position, and co-chromatography data 
supported this notion. Epimerization between 
L and D isomers of tryptophan has been 
obsened in one collotoxin peptide (11); and 
assignment of L-6- Br-Trp in position 34 was 
therefore determined directly by coelution 
of native and synthetic [ ~ - 6 - B r - T l y ~ ~ C y s  
(PyE)36.3S,J0] u - ~ o l l o t o x i n ( ~ ~ ~ ~ , ~  fragments 

under conditions where synthetic a-cono- 
toxin(,,_,,, peptides colltaining ~ - 6 - B r - T r p ~ ~  
and ~-6-Br-Tlp~%ould be resolved (Fig. 1B: 
right) (12). Sequence analysis of a cloned 
cDNA encoding o-conotoxin was consistent 
with the amino acid sequence for the purified 
toxin peptide, including a tryptophan at posi- 
tion 34 and a glycine at position 42, from 
which the COOH-temnlinal amide is presum- 
ably derived (13). 

Electrophysiological analysis of o-cono- 
toxin activity demonstrated that it is a potent 
and reversible inhibitor of 5-HT, receptor 
channels. At 1 pM, a-conotoxin completely 
inhibited 5-HT, responses to bath-applied se- 
rotonin (10 pM) (Fig. 2A). Washout of the 
toxin led to full recovery of 5-HT, channel 

Fig. 1. Identification of A $ a  g f i  $ f i g  n-conotoxin as an inhib- 27 5 h a  h  a &  

itor activity. of (A) 5-HT, Xenopus receptor oo- 3min~teven;;~ application 
cytes were coinjected 
with cRNAs encoding 
5-HT, and PZX, recep- 
tors and analyzed for se- 
rotonin-evoked (10 pM) 
or ATP-evoked (100 pM) 

-. 

currents. After determi- B 
nation of initial agonist 
responses, oocytes were 
removed from the re- , .- 
cording chamber to min- 
imize the volume of tox- 
in used and incubated for 
3 min in 5 pl of crude C. 
geographus venom ex- 
tract (protein concentra- 

,,I, :;/A[: 5 
2 

tion, 0.25 mglml) in 
Ringers solution. Subse- 
quent responses showed 
selective and com- 

I i  M I ,  ::/+c 
plete e l iminat ion o f  10 15 10 2 1  30 

15 20 

serotonin-evoked cur- Time (min) Time (min) 
rents, which even- - 
tually recovered after C 
a ~ r o l o n ~ e d  washout 
pe;iod. (B1) (Left) Puri- ' ? 'P 3? 1 4? 

fication of CVlllA o -  GCTRTCGGOKCTGTCTCTNSSKCGCR~NVHPSGBGCGCACS-NH~I 
conotoxin from C. aeo- 
qraphus venom. Ven- - ,  
o m  extract was puri- 

U 
H I, 

CH,--CH,,NH~ rN.CHrC- fied w i th  three se- HO- ,/'h./& 
quential (upper, mid-  
dle, and lower panels) 
reverse-~hase HPLC 
steps. The fraction 
containing 5-HT, re- 
ceptor antagonist ac- 
t iv i ty  is indicated w i t h  an arrow. Pure bioactive peptide (arrow, lower panel) was subjected t o  
chemical sequencing and mass spectrometry. (Right) Coelution o f  the  native and synthetic 
[ ~ - 6 - B r - T r p ~ ~ C y s ( P y E ) ~ ~ , ~ ~ , ~ O ]  u-conotoxin ,,-,, . HPLC chromatograms o f  (upper panel) native 
~ - c o n o t o x i n ( , ~ ~ ~ ~  (arrow), which was collected for reinjection; (middle panel) synthetic [L-6-Br- 
T ~ ~ ~ ~ c ~ ~ ( P ~ E ) ~ ~ ~ ~ ~ ~  o - ~ o n o t o x i n ( ~ ~ ~ ~ ~ ~ ;  (lower panel) coelution of native and synthetic [L-6-Br- 
Trp34Cys(PyE)363840] ~-conotoxin(,,~~,) under conditions where the  D-6-Br-Tr~,~-containing 
synthetic o-conotoxin fragment eluted a t  a distinct position f rom the ~ - 6 - B r - T r p ~ ~  and native 
~ - c o n o t o x i n ~ , ~ ~ ~ , )  fragments. (C) Amino acid sequence o f  purified a-conotoxin CVIIIA. 0, hy- 
droxyproline; B, 6-L-bromotryptophan; NH,, COOH-terminal amidation. Single-letter abbreviations 
for the  amino acid residues are as follows: A, Ala; C, Cys; C, Cly; H, His; K, Lys; N, Asn; P, Pro; R, Arg; 
S, Ser; T, Thr; V, Val; and Y, Tyr. The synthetic peptide used for coelution studies corresponds t o  the 
boxed sequence. The chemical structure for 6-bromottyptophan is compared w i th  tha t  of serotonin 
(5-hydroxyttyptamine). 
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function, with half-maximal activity retuin- 
ing witl~in 8 to 23 min (average time 12.5 
min; iz = 6). This presumably reflects a slow 

interaction of a-conotoxin with the 5-HT, 
receptor rivals the highly specific and potent 
synthetic small molecule antagonists, such as 
zacopride, ondansetron, and MDL 72222, 
which have reported K,'s of 0.1 to 1.9 nM, 
0.9 to 6.0 nM, and 5.3 to 55 nM, respectively 
(16). o-Conotoxin has a Hill coefficient of 

ings that the toxin mactivates the 5-HT, re- 
ceptor primarily through competitive antago- 
nism, which is presuinably mediated through 
interaction of the toxin with the extracellular 
domain of the receptor. 

dissociation rate of the toxin, because 5-HT, 
c11an11el activity fully recovered from agonist 
stimulation within 2 min in the absence of 
toxin. To assess the specificity of o-cono- 

The identification of o-conotoxii~ demon- 
strates that the serotonergic system is a target 
for venoms of predatory snails. The 5-HT, 
receptor is the first known inolecular target of 

toxin for 5-HT, receptors, we compared its 
actions at several other ileurotransnlitter re- 

1.0, which suggests that it interacts with a 
single site or with multiple noncooperative 

ceptors that either bind the same agonist or 
share structural similarities (14). Whereas 
5-HT, receptor activity was fully blocked by 
a-conotoxin, no significant inhibitory effect 

sites. We also asked whether o-conotoxin 
could interact with the 5-HT, subtype, a 

any Br-Trp-containing conotoxin, and per- 
haps this derivatized tryptophan residue is an 

inetabotropic receptor that is activated by 
some antagoilists of the 5-HT, receptor. 

important detei~ninant of the phannacologi- 
cal specificity of a-conotoxin, because the 

was seen with the other receptors or channel 
conlplexes (Fig. 2B). 

Competitive radioligand binding skdies with 
the 5-HT, antagonist ['HI-GR- 1 13808 did 

endogellous agonist for 5-HT receptors is a 
hydroxylated tiyptophan derivative (Fig. 1C). 
Indeed, the 6-Br-Trp moiety is located within 
the largest intercysteiile segment of the toxin, 

To derelmiile whether u-conotoxin is a 
competitive antagonist, we tested the ability 

not reveal any interaction between o-cono- 
toxin and the cloned 5-HT, receptor (13). We 

of purified toxin to displace the competitive 
antagonist ['HI-zacopride from HEK293 
cells stably expressing 5-HT, receptors (15). 
These data show that o-conotoxin poteiltly 
displaced [3H]-zacopride, with a median in- 
hibitory concentration (IC,,) of 53 f 3 nhl, 
from which an inhibition constant (K,) of 
4.8 f 0.3 nh4 was derived (Fig. 2C). The 

also asked whether o-conotoxin could inacti- 
vate a chimeric ion channel in which the 

a hypewariable region of conotoxin peptides 
that has been hypothesized to play a critical 
role in defining target specificity (5, 18). 
Thus, perhaps the 6-Br-Trp moiety is situated 

putative extracellular ligand binding domain 
of the 5-HT, receptor is replaced with the 
cognate region of the a 7  nicotiilic acetylcho- 
line receptor (nAChR) (17). The failure of 
purified a-conotoxii~ to block the a7i5-HT, 
chimera (Fig. 2B) is coilsistent with our find- 

within a constrained loop of the toxin in a 
coilfieuratioil that favors interaction with the - 
serotonin binding site. Tests of this hypothe- 
sis await the availability of functional syn- 
thetic toxin peptide containing substitutions 
at the Br-Trp position. A related question is 
whether other Br-Trp-containing conotoxins 
target 5-HT receptors. We tested the ability of 
two such peptides, broinocontryphan and 

Fig. 2. Purified u-conotoxin 
CVlllA is a highly specific and 
reversible competit ive antago- 
nist o f  the  5-HT, receptor. (A) A 
Xenopus oocyte expressing the 
5-HT, receptor was challenged 
w i th  serotonin (10 p,M, arrows) 
before and after incubation in  
purified u-conotoxin CVll lA (1 
kM) .  Continuous washing o f  the 
oocyte resulted in  recovery of 
half-maximal serotonin-evoked 
responses by - 12.5 min. Direct 
addition of purified tox in t o  the  
recording chamber did no t  elicit 
responses, demonstrating that  
the tox in has no measurable ag- 
onist activity. (0) Xenopus oo- 
cytes expressing a given seroto- 
nin receptor subtype (5-HT,, 
5-HT,,, 5-HT,,, or 5-HT,,), an 
nAChR complex [muscle (m-) 
c r l p l y 8 ,  neuronal (n-) (r4P2, 
n-a3p4,  or n-a7], o r  chimeric re- 
ceptor (a715-HT,) were used t o  
assess the  specificity o f  u-cono- 
tox in action. Oocytes were ex- 
amined for their response t o  se- 
rotonin or acetylcholine in  the 
two-electrode voltage-clamp con- 
figuration. Data were normalized 
t o  the response of each oocyte 
before exposure t o  toxin. Error 
bars indicate average respons- 
es i- SEM. Uninjected control 
oocytes showed no  response t o  
serotonin o r  acetylcholine. (C) 
u-Conotoxin and zacopride com- 
pete for binding t o  the  5-HT, 
receptor. Membrane prepara- 
tions f rom stably transfected 

bromoheptapeptide, to block the activity of 
5-HTlA, 5-HT2A, 5-HT2C, and 5-HT, re- 
ceptors. No inhibition was obsei~ed, al- 
though many other receptor and channel sub- 
types still remain as potential targets for bro- 
ininated toxins. 

Predatory strategies of Conus snails in- 
clude inultiple simultaneous mechanisms for 
iminobilizing prey through neuromuscular 
and sensoly blockade and excitotoxic shock 
(5). Inactivation of 5-HT, receptors could 
contribute to iilhibitioil of neurotranslnitter 
release at motor or sensory synapses. I i ~ e -  
spective of whether 5-HT receptors in fish are 
bona fide physiological targets for conotox- 
ins, veilom of the COIIL/S snail can be viewed 
as a coinbinatorial peptide library that main- 
tains a broad specti-um of neuroactive ligailds 
capable of incapacitating prey through myri- 
ad inolecular mechanisms. o-Conotoxin is a 
potent reagent with which to probe the ago- 
nist binding site of one member of an impor- 
tant class of ligand-gated ion channels. 
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