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is that SLP-76 may recruit a PTK to the 
complex to mediate phosphorylation of PLC- 
y l .  Our results provide a basis for under- 
standing the biochemical coupling of SLP-76 
to specific signaling events. 
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Requirement for the 
Leukocyte-Specific Adapter 
Protein SLP-76 for Normal 

T Cell Development 
James L. Clements, Baoli Yang, Susan E. Ross-Barta, 

Steve L. Eliason, Ronald F. Hrstka, Roger A. Williamson, 
Gary A. Koretzky* 

The leukocyte-specific adapter molecule SLP-76 (Src homology 2 domain- 
containing leukocyte protein of 76 kilodaltons) is rapidly phosphorylated on 
tyrosine residues after receptor ligation in  several hematopoietically derived 
cell types. Mice made deficient ~ O ~ S L P - 7 6  expression contained no peripheral 
T cells as a result of an early block in  thymopoiesis. Macrophage and natural 
killer cell compartments were intact in  SLP-76-deficient mice, despite SLP-76 
expression in  these lineages in wild-type mice. Thus, the SLP-76 adapter protein 
is required for normal thymocyte development and plays a crucial role in  
translating signals mediated by pre-T cell receptors into distal biochemical 
events. 

Activation of cytoplasmic tyrosine kinase ac- 76-associated phosphoprotein of 130 kD) 
tivity is required for T cell receptor (TCR)- and an unidentified 62-M) tyrosine phospho- 
dependent lymphocyte activation (1). Adapt- protein (5, 8, 9). The ability of SLP-76 to 
er proteins serve as substrates for these ki- augment TCR-dependent nuclear factor of 
nases and as such may function to couple the activated T cells (NFAT) activation when 
TCR with downstream signaling events (2- transiently overexpressed in a T cell line is 
6 ) .  SLP-76 is a hematopoietic cell-specific dependent on the presence of each of these 
adapter protein that is phosphorylated rapidly domains, suggesting that the association be- 
on NH,-terminal tyrosine residues after TCR tween SLP-76 and at least a subset of these 
ligation (3), providing a binding site for the molecules is required for optimal function 
Src homology 2 (SH2) domain of Vav (7). (10). 
SLP-76 also contains a central proline-rich In mice, SLP-76 expression is restricted to T 
region that associates constitutively with the lymphocytes, macrophages, and natural killer 
SH3 domains of Grb2 (8). In addition, SLP- (NK) cells (11). SLP-76 is developmentally 
76 has a COOH-terminal SH2 domain that regulated during thyrnopoiesis, with highest ex- 
inducibly associates with SLAP-130 (SLP- pression found at stages of development that 

coincide with pre-TCR-dependent selection 
and maturation from a C D ~ ' C D ~ +  phenotype 
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the reverse transcriptional orientation. In a 
properly targeted allele, the wild-type 14-kb 
Bam HI fragment is converted to a 10-kb frag- 
ment as a result o f  the incorporation o f  a novel 
Bam HI site contained within the targeting vec- 
tor. O f  85 neomycin- and gancyclovir-resistant 
embryonic stem (ES) cell clones analyzed, we 
found 6 (7%) to contain a properly targeted 
SLP-76 allele. Two o f  these clones were micro- 
injected into C57BW6 blastocysts, and chirner- 
ic mice were then bred to wild-type C57BL16 
mice. Germ line transmission was confirmed by  
Southern blot analysis o f  tail genomic DNA. 
Heterozygous mice were then mated to obtain 
homozygous SLP-76-deficient mice. 

As determined b y  Southern blot analysis 
o f  tail genomic D N A  obtained from heterozy- 
gous matings (Fig. lB), the frequency o f  
SLP-76-deficient (-I-) mice was -7%, 
whereas wild-type (+I+) and heterozygous 
(+I-) mice represented 29 and 64%, respec- 
tively, o f  the total progeny screened (N = 
135). Despite the low frequency o f  SLP- 
76-I- mice, they showed no major develop- 
mental abnormalities at any time during the 
first 10 weeks o f  life. To verify the absence o f  
SLP-76 gene products in SLP-76-I- mice, 
we used reverse transcriptase-polymerase 
chain reaction (RT-PCR) to analyze SLP-76 
expression in samples obtained from control, 
+I-, and -1- mice (13). Whereas two in- 
dependent sets o f  PCR primers specific for 
SLP-76 amplified the appropriate cDNA 
from control and SLP-76+/- mice, no such 
amplification product was detected in cDNA 
derived from SLP-76-I- mice (Fig. 1C). Fur- 
thermore, SLP-76 protein was not detectable 
in SLP-76-I- splenocytes b y  protein immu- 
noblot analysis or intracellular staining with 
a fluorochrome-conjugated, affinity-purified, 
SLP-76-specific sera (14). 

Upon dissection, it was apparent that 
lymph nodes from SLP-76-'- mice were 
smaller than those observed in +I+ or +/- 
mice. In contrast, spleens from SLP-76-I- 
mice were enlarged, resulting in a two- to 
threefold increase in cell yield. Fluorescence- 
activated cell sorter (FACS) analysis o f  cell 
populations in the spleen revealed a complete 
lack o f  T cells (CD3+, CD4+, or CD8+) in 
SLP-76-I- mice (15) (Fig. 2A). The minor 
population o f  yS-TCR+ lymphocytes was 
also absent from the spleen and liver (14). 
The B cell (B220+) compartment was intact 
in the spleen from SLP-76-I- mice, consis- 
tent with our observation that primary murine 
B cells do not express detectable amounts o f  
SLP-76 (11). Like the spleen, no T lympho- 
cytes were detected in peripheral blood ob- 
tained f rom SLP-76-I- mice, whereas nor- 
mal percentages o f  B lymphocytes were present 
(14). Spleens from SLP-76-I- mice contained 
macrophages Wac-1+) and at least a subset o f  
NK @X5+CD3-) lymphocytes (Fig. 2A), de- 
spite expression o f  SLP-76 in these cell types in 
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A 
Wild-type allele 

Targeted allele Rabm A 
0 X Xh - 

E X E 0 
5' I : /*a* 

2 3 
0m HI fragfnmr- 10 kb 

Fig. 1. SLP-76 genomic lo- 
cus and targeting vector, 
and confirmation of the 6 8$?fl 

* -"b- +,+ 8 1 284 
generation of an SLP-76 
null allele. (A) The relative 14kb 7% - "P-76 5'- 

location of the first three lokb - 
coding exons (filled boxes) 

oran r~ 

within the wild-type SLP- 
76 locus are shown (top). The first exon contains 185 bp of untranslated 

" 7 7  
sequence (striped box) followed by the translational start codon and 75 
bp of coding sequence. The targeting construct contains 1.6 kb of genomic sequence immediately 
upstream of the translational start site and 3.0 kb of intronic sequence Immediately downstream of the 
first exon. A correctly targeted SLP-76 allele includes a novel Bam HI site introduced by the replacement 
of the coding region of the first exon wlth the neomycin (NEO) resistance cassette. The relative location 
of Bam HI (B), Eco RI (E). Xba I (X), and Xho I (Xh) restriction sites are depicted. The region 
corresponding to  a 800-bp genomic probe (probe A) used for Southem blot analysis is also shown. 
HSV-TK, herpes simplex virus thymidine kinase. (B) Southern blot analysis of tail genomic DNA 
Cenomic DNA was isolated from tails, digested with Bam HI, and separated by electrophoresis followed 
by transfer and hybridization with probe A. (C) RT-PCR analysis for SLP-76-specific mRNA. The cDNA 
generated from normal control splenocytes (CtrVSpleen), perfused Balblc liver (CtrVLiver), SLP-76"- 
splenocytes, SLP-76-'- splenocytes, or the murine T cell line 2B4 was used as a template for RT-PCR 
with SLP-76-specific primers (top and middle panel) or Grb2-specific primers (lower panel). The 5' 
SLP-76 primers amplify a 690-bp product containing sequence targeted for recombination. The 3' 
SLP-76-specific primers amplify a 998-bp product completely downstream of the targeted sequence. 

Fig. 2. SLP-76-deficient A 
mlce contain no peripher- 
al T cells because of an 
early block in thymopoi- 
esis. (A) Splenocytes were 
obtained from 10-week- 
old SLP-76 +I- or -1- 
mice by density gradient 
centrifugation and sur- 
face stained with anti- 
bodies to  the indicated ,. 
proteins. Only those cells 
with forward and side CM) C D ~  ' C D ~ '  MIIC-1 

scatter characteristics In- 
dicative of lymphocytes B 
were included in the anal- 
ysis. In these and subse- 
quent experiments, stain- +/- 
ing with isotype-matched, 
nonspecif~c, fluorochrome- 
conjugated control antibod- 
ies was performed to estab- 
lish background staining lev- 
els (14). The percentage of -/- 
cells In each quadrant or 
gate is shown. (0) Thymo- 
cytes were isolated from 10- CMI C D ~  C D ~ S  ~ ~ 4 4  
week-old SLP-76 +I- or log (Relative flwrescenoe) 
-1- mice and stained with 
fluorochrome-conjugated antibodies to the indicated proteins. For the Last panel in each p u p ,  celb that 
stalned positive w~th FITC-conjugated antibodies specific for CD3, CD4, and CD8 were excluded from analysis, 
and only those cells that stained pos~tive for Thy-1.2 were analyzed for expression of CD44 and CD2S allowing 
for the exclusion of nonthymocytes, which could potentially contaminate the preparation. Virtually 100% of 
the SLP-76-/- thymocytes were CD3-CD4-CD8-. The percentage of cells in each quadrant or gate is shown. 
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wild-type mice (11). Thus, SLP-76 expression 
is not required for the development of rnacro- 
phages and the DX5+ NK cell lineage. 

The lack of peripheral T cells in SLP- 
76-I- mice suggested a defect in thymocyte 
maturation and development. Indeed, the thy- 
mus was small and difficult to identify in 6- 
to 10-week-old SLP-76-I- mice. As a result, 
cell yield was reduced by a factor of about 10 
to 20 compared with +I+ or +I- littermate 
controls (14). The reduced cell number in the 
SLP-76-I- thymus was the result of an early 
block in thymocyte development, as shown 
by the complete lack of CD4+CD8+, CD4+, 
or CD8+ thymocyte populations (Fig. 2B). 
Closer inspection of the thymocytes obtained 
from SLP-76-I- mice revealed a specific 
block at the transition from a CD44-CD25+ 
to CD44-CD25- phenotype (Fig. 2B), a de- 
velopmental step that requires expression and 
function of a competent pre-TCR signaling 
complex (16, 17). In normal mice, about 5 to 
10% of CD44-CD25+ thymocytes are ac- 
tively cycling as a consequence of pre-TCR 
ligation (1 7). However, we did not find evi- 

6 Spleen Thymus 
4 .cI c 4- 4+ 

Fig. 3. Detection of TCR P chain rearrange- 
ment and preTa mRNA expression in imma- 
ture thymocytes obtained from SLP-76-I- 
mice. (A) Cenomic DNA obtained from SLP- 
76 +I- or -1- thymocytes was used as a 
template for PCR with the indicated 5 '  sense 
primer and a common antisense primer lo- 
cated just downstream of the Jp2.6 gene 
segment. PCR products were resolved by aga- 
rose gel electrophoresis, transferred to a ny- 
lon membrane, and hybridized with a oli- 
gomer probe specific for the Jp2.6 gene seg- 
ment. Specific Dp2 to Jp2 rearrangement 
products are noted. An ES cell line was used 
as a source of nonrearranged control genomic 
DNA. (B) The cDNA generated from total 
RNA isolated from thymus and spleen from 
the indicated mice was used as a template in 
PCR with primers specific for preTa or Crb2. 

dence for such a population as defined by 
forward scatter characteristics within the ac- 
cumulating CD44-CD25+ thymocytes in 
SLP-76-I- mice (14). 

The maturational arrest in SLP-76-I- 
mice could be due to either a lack of TCRP 
chain gene rearrangement and subsequent 
pre-TCR expression or defective signaling 
initiated by the pre-TCR complex (18). To 
determine if the immature thymocytes isolat- 
ed from SLP-76-I- mice could rearrange 
TCRP chain gene segments, we performed 
PCR and Southern blot analysis to look for 
specific recombination events (19) (Fig. 3A). 
We detected identical rearrangement prod- 
ucts in thymocytes obtained from both SLP- 
76+'- and SLP-76-I- mice. Only the germ 
line (GL) Dp2-Jp2 configuration was detect- 
able in control ES cell genomic DNA. In 
addition, transcripts specific for preTa were 
detected by RT-PCR in thymocytes obtained 
from SLP-76-I- mice (13) (Fig. 3B). Thus, 
the absence of SLP-76 expression does not 
affect TCRP chain gene rearrangement or 
preTa mRNA expression and more likely 
affects the ability of the pre-TCR complex to 
transduce maturational signals. 

Given the observation that B cells de- 
velop normally in SLP-76-I- mice, we 
determined the proliferative capacity of B 
cells isolated from these animals in re- 
sponse to several polyclonal stimuli. In ad- 
dition, we measured basal IgM concentra- 
tions in sera obtained from SLP-76 +I+, 
+I-, and -1- mice (20). Splenocytes iso- 
lated from both +I- and -1- mice re- 
sponded comparably to polyclonal B cell 
stimuli (LPS and CD40 ligation) as assayed 
by thymidine incorporation after 48 or 72 
hours in culture (Fig. 4A). The increased 
proliferative capacity of splenocytes isolat- 
ed from SLP-76-I- mice in response to 
CD40 ligation and LPS is likely due to the 
higher proportion of B cells in these prep- 

arations. As expected, splenocytes from 
SLP-76-I- mice failed to respond to plate- 
bound anti-CD3e because of the lack of 
peripheral T cells. Comparable concentra- 
tions of IgM were detected in the serum 
from SLP-76 +I+, +I-, and -1- mice 
(Fig. 4B). Thus, the B lymphocytes that 
develop in SLP-76-I- mice retain the abil- 
ity to proliferate in response to polyclonal 
stimuli and secrete normal amounts of basal 
IgM. 

Developing thymocytes are subjected to a 
rigorous receptor-dependent selection pro- 
cess, whereas other SLP-76-expressing he- 
matopoietic cell lineages mature in the ab- 
sence of selection. This may explain why 
SLP-76 deficiency has such a profound effect 
on the T cell compartment but does not affect 
macrophage and NK cell development. Early 
maturation events in the thymus are governed 
by a pre-TCR signaling complex composed 
of a properly rearranged TCR P chain and a 
surrogate a chain, preTa (21). Upon ligation, 
the pre-TCR initiates biochemical signals 
similar to those elicited upon ligation of a 
mature TCR complex, including activation of 
cytoplasmic tyrosine kinases (22). The best 
candidate for the kinase responsible for ty- 
rosine phosphorylation of SLP-76 after TCR 
ligation is the Syk family tyrosine kinase 
ZAP-70 (23). ZAP-70 deficiency in mice re- 
sults in a comparatively mild developmental 
block at the CD4+CD8' to single-positive 
transition (24). Arrested development at the 
CD44-CD25+ stage of thymopoiesis is only 
realized when both ZAP-70 and Syk are de- 
ficient (25). Similarly, arrest at the 
CD44-CD25+ developmental checkpoint is 
only observed when both Lck and Fyn are 
absent (26). Thus, unlike the Src and Syk 
family tyrosine kinases, there appears to be 
no redundancy at the level of SLP-76 func- 
tion in pre-TCR-dependent signaling path- 
ways and during thymocyte development. 

Fig. 4. B cells from SLP-76-I- mice proliferate in response to polyclonal stimuli and generate 
normal amounts of IgM. (A) Splenocytes were isolated from SLP-76+/- mice (solid bar) or -1- 
mice (hatched bar) and cultured in triplicate in media alone or stimulated with the indicated 
rea ents for 48  or 72 hours (HR). After culture, proliferation was determined by measurement of 
[3Hythymidine incorporation during the last 4 hours of culture. The fold increase in proliferation 
was calculated by dividing the counts per minute obtained under conditions of stimulation by the 
counts per minute from nonstimulated cultures. (B) Sera were obtained from SLP-76 +I+,  +I-, 
and -1- mice, and concentrations of circulating IgM were determined by enzyme-linked immu- 
nosorbent assay. 
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Corelease of Two Fast 
Neurotransmitters at  a 

Central Synapse 
Peter Jonas," Josef Bischofberger, Jurgen Sandkuhleri 

I t  is widely accepted that individual neurons in  the central nervous system 
release only a single fast transmitter. The possibility of corelease of fast 
neurotransmitters was examined by making paired recordings from synaptically 
connected neurons in  spinal cord slices. Unitary inhibitory postsynaptic currents 
generated at interneuron-motoneuron synapses consisted of a strychnine- 
sensitive, glycine receptor-mediated component and a bicuculline-sensitive, 
y-aminobutyric acid (CABA), receptor-mediated component. These results 
indicate that spinal interneurons release both glycine and CABA t o  activate 
functionally distinct receptors in  their postsynaptic target cells. A subset of 
miniature synaptic currents also showed both components, consistent wi th  
corelease from individual synaptic vesicles. 

Synaptic transmission in the central nervous 
system (CNS) is mediated by the release of 
neurotransmitters into the synaptic cleft and 
the subsequent activation of postsynaptic re- 
ceptors. A single neurotransmitter can coac- 
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tivate multiple ionotropic and metabotropic 
receptor types ( l) ,  and a fast neurotransmitter 
can be coreleased with neuropeptides (2). In 
the spinal cord and brainstem, both glycine 
and GABA mediate inhibitory synaptic trans- 
mission (3). It is not known, however, whether 
glycine and GABA are released from sepa- 
rate or overlapping populations of interneu- 
rons. Glycine- and GABA-like immunoreac- 
tivity coexist in the somata and boutons of 
subpopulations of spinal interneurons, and 
glycine receptor (GlyR) subunit, GABA, re- 
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