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Uncoupling of Nonreceptor 
Tyrosine Kinases from PLC-y 1 
in an SLP-76-Deficient T Cell 
Deborah Yablonski, Michelle R. Kuhne, Theresa Kadlecek, 

Arthur Weiss" 

Activation of nonreceptor protein tyrosine kinases (PTKs) is essential for T cell 
receptor (TCR) responsiveness; however, the function of individual PTK sub- 
strates is often uncertain. A mutant T cell line was isolated that lacked ex- 
pression of SLP-76 (SHZ domain-containing leukocyte protein of 76 kilodal- 
tons), a hematopoietically expressed adaptor protein and PTK substrate. SLP-76 
was not  required for TCR-induced tyrosine phosphorylation of most proteins, 
but was required for optimal tyrosine phosphorylation and activation of phos- 
pholipase C-yl (PLC-yl), as wel l  as Ras pathway activation. TCR-inducible gene 
expression was dependent on SLP-76. Thus, coupling of TCR-regulated PTKs t o  
downstream signaling pathways requires SLP-76. 

The T cell antigen receptor (TCR) is coupled 
to downstream signaling events by nonrecep- 
tor protein tyrosine kinases (PTKs) (I). The 
TCR-induced PTKs Lck and ZAP-70 trigger 
calcium-dependent and Ras-dependent sig- 
naling pathways (2). TCR-induced calcium 
flux depends on tyrosine phosphorylation and 
activation of phospholipase C-yl (PLC-yl), 
leading to increases in inositol phosphates 
and intracellular calcium (3). Activation of 
Ras is thought to result from recruitment of a 
GRB2-SOS complex to the membrane. After 
TCR stimulation, a membrane-bound adaptor 
protein, LAT(pp36) (linker for activation of 
T cells), is heavily tyrosine phosphorylated 
and subsequently binds GRB2 and PLC-y1 
through their SH2 domains (4-6). LAT, 
therefore, may link PTK activity to activation 
of both the Ras and calcium pathways. 

SLP-76, like LAT, is a GRB2-binding 
adaptor protein that is tyrosine phosphoryl- 
ated after TCR stimulation (7). SLP-76 com- 
prises a COOH-terminal SH2 domain, a cen- 
tral proline-rich region that binds to the 
GRB2 SH3 domains, and multiple NH,-ter- 
minal tyrosine phosphorylation sites, which 
mediate TCR-inducible association of SLP- 
76 with Vav, a guanine nucleotide exchange 

factor for Rho-family guanosine triphos- 
phatases (7-10). Overexpression of SLP-76 
augments TCR-induced transcriptional re- 
sponses (8, 9, 11, 12). However, the mecha- 
nism by which overexpression of SLP-76 
augments TCR signaling is not understood, 
and the function of endogenous SLP-76 has 
been difficult to address. 

An SLP-76-deficient T cell, 514, was 
isolated while screening Jurkat T cell sub- 
clones for TCR-inducible expression of the 
CD69 activation marker (Fig. 1A) (13). 
CD69 is induced in a Ras-dependent manner 
following stimulation with anti-TCR or with 
phorbol myristate acetate (PMA) (14). Clone 
J14 lacked TCR-inducible expression of 
CD69, despite normal TCR expression and 
normal PMA-induced up-regulation of CD69 
(Fig. 1A). This phenotype suggested that the 
clone is defective at a proximal step in the 
TCR pathway leading to Ras activation. 

Initial characterization of J14 revealed 
that it lacked SLP-76 protein (Fig. 1B). Nu- 
merous other signaling proteins examined 
were present, including Vav, ZAP-70, PLC- 
y 1, Erk2, Cbl, Pakl , LAT, Itk, and Nck [(15) 
and below]. Whereas SLP-76 was detected in 
anti-SLP-76 immune complexes prepared 
from Jurkat cells, it was undetected in im- 
mune complexes prepared from 125 times 
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that retained TCR surface expression (15) 
and expressed SLP-76 at wild-type levels. 
Vector transfectants did not express SLP-76 
(Fig. 1B). TCR-induced CD69 expression 
was restored by expression of SLP-76 (Fig. 
lA), showing that the signaling defect of J14 
is attributable to the lack of SLP-76. 

Northern (RNA) blot analysis revealed 
that SLP-76 transcripts were reduced in the 
514 mutant cells and restored in the SLP-76- 
reconstituted cells, correlating with expres- 
sion of the protein (Fig. lC, top panel). 
Southern (DNA) blot analysis did not reveal 
differences in the genomic structure of SLP- 
76 in J14 cells compared to Jurkat (15). 

Whereas CD69 induction depends only on 
the Ras pathway (14), TCR-dependent acti- 
vation of interleukin-2 (IL-2) transcription 
requires both the TCR-induced Ras and cal- 
cium pathways, as well as additional signals, 
which can be provided by PMA or by the 
CD28 costimulatory receptor (17). After 
stimulation with anti-TCR and PMA, Jurkat 
cells up-regulated expression of an IL-2-lu- 
ciferase reporter, whereas J14 cells did not 
(Fig. ID). The 514 subclones stably trans- 
fected with SLP-76 responded normally (Fig. 
ID). Thus, all of the proteins required for 
transcriptional activation of IL-2 by the TCR 
are present in J14, except SLP-76. 

In Jurkat T cells, Raji B lymphoblastoid 
cells plus the superantigen, staphylococcal 
enterotoxin D (SED), can be used to activate 
IL-2 transcription. This cell-cell interaction, 
in which the complex of molecular and asso- 
ciated superantigen major histocompatibility 
complex stimulates the TCR while other li- 
gands expressed on Raji cells provide co- 
stimulation, is a close approximation of in 
vivo stimulation of a T cell by an antigen- 
presenting cell (APC). SLP-76-deficient J14 
cells did not respond to Raji plus SED, 
whereas the response was restored in SLP- 
76-reconstituted cells (Fig. ID). Thus, SLP- 
76 is essential for TCR responsiveness to a 
physiological stimulus delivered during a T 
cell-APC interaction. 

On the basis of the CD69 defect, we hy- 
pothesized that TCR-mediated activation of 
the Ras pathway was defective in 514. Con- 
sistent with this interpretation, TCR-mediat- 
ed, Ras-dependent phosphorylation of Erk2 
was substantially reduced in J14 cells relative 
to Jurkat (Fig. 2A). In contrast, PMA-induced 
Erk2 activation was equivalent in both cell 
types (Fig. 2A), and an SLP-76-reconstituted 
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subclone exhibited normal TCR-mediated 
Erk2 activation (Fig. 2B). 

Impaired coupling of the TCR to the Ras 
pathway in 514 also resulted in reduced acti- 
vation of an AP-1 transcriptional reporter 
construct (Fig. 2C). The average TCR-in- 
duced activation of the AP-1-luciferase re- 
porter was 8.6 ? 1.3-fold in Jurkat cells 
compared to 2.6 2 0.4-fold in 514 cells. As 
expected, AP-1 activation was restored in the 
mutant after stimulation with PMA or reex- 
pression of SLP-76. Thus, TCR-mediated ac- 
tivation of both AP-1 and Erk2 was partially 
reduced in the absence of SLP-76, indicating 
that SLP-76-deficient cells exhibit an in- 
complete, but significant defect in TCR-me- 
diated activation of Ras-dependent responses. 
Further, SLP-76 acts upstream to or indepen- 
dently of Ras, because the defect can be 
bypassed by stimulation with PMA. Because 
SLP-76 binds to GRB2, the simplest interpre- 
tation is that SLP-76 facilitates efficient sig- 
naling through GRB2-SOS; however, other 
explanations are possible. 

To identify other TCR-induced signaling 
events .that depend on SLP-76, we compared 
tyrosine phosphoproteins induced in J14 and 
Jurkat cells. In whole-cell lysates, the overall 
pattern of TCR-induced tyrosine phosphoryl- 
ation was unchanged, except that the band 
corresponding to SLP-76 itself was absent in 
the mutant (Fig. 3A). Imrnunoprecipitation of 
specific PTK substrates revealed that TCR- 
induced tyrosine phosphorylation of Vav, 
ZAP-70, Itk, and LAT was unaffected by the 
absence of SLP-76 (Fig. 3B), suggesting that 
most PTKs are activated normally. In con- 
trast, TCR-induced tyrosine phosphorylation 
of PLC-yl was significantly decreased in 
SLP-76-deficient cells and was restored af- 
ter reexpression of SLP-76 (Fig. 3C). 

LAT binds to both GRB2 and PLC-y 1 and 
may thereby initiate signaling through the 
Ras and calcium pathways, respectively. Be- 
cause LAT phosphorylation appeared nor- 
mal, we examined TCR-induced recruitment 
of both GRB2 and PLC-yl to LAT in 
SLP-76-deficient and SLP-76-reconstituted 
cells. Recruitment of both signaling mole- 
cules to LAT appeared normal in the absence 
of SLP-76 (Fig. 3D), despite the reduced 
PLC-y 1 tyrosine phosphorylation. 

Consistent with the PLC-yl defect, 514 
had reduced TCR-induced activation of the 
inositol phosphate pathway, which was re- 
stored in SLP-76-reconstituted cells (Fig. 
4A). Furthermore, TCR-induced calcium flux 
was reduced in SLP-76-deficient cells and 
was restored to wild-type levels by reexpres- 
sion of SLP-76 (Fig. 4B). 

To test the functional significance of the 
calcium defect, we examined activation of 
NFAT (nuclear factor of activated T cells), a 
composite transcription factor dependent on 
both the Ras and calcium pathways (18). 

TCR-mediated activation of an NFAT-lucif- 4C). However, downstream signaling path- 
erase reporter plasmid was completely abro- ways remained intact, because activation of 
gated in SLP-76-deficient 514 cells (Fig. NFAT-using PMA and ionomycin to acti- 

CD3 FlTC CD89 FlTC D - 
Fig. 1. Characterization of an SLP-76-deficient T cell ,$ t o m  
line. (A) We analyzed Jurkat cells (wild type), the ?2 
SLP-76-deficient cell, 114-v-29, or the SLP-76-re- %$ 
constituted cell, 114-76-11, by immunofluorescence 3 * 
and flow cytometry, using fluorescein isothiocya- $g 
nate (FITC)-conjugated (Becton Dickinson) anti- rn 
TCRlCD3 (left panels), or anti-CD69 (right panel). o 

CD69 staining was done after a 14-hour incubation Jurltat J14 Jl  kv-29 J14-76-11 

with medium (dotted line), monoclonal antibody to  TCR. C305 (bold line), or 50 nglml PMA (thin 
line). This experiment is representative of four (25). (B) SLP-76 protein expression. Total lysates 
from Jurkat cells (lanes 1 and 3), J14 (lane 2). and independent sub-clones of J14 stably transfected 
with Flag-tagged SLP-76 (lanes 4 to  7) or a vector control (lanes 8 and 9) were resolved by 
SDS-PAGE, transferred to  a polyvinylidene difluoride membrane, and probed by protein immuno- 
blotting using a sheep polyclonal antiserum to  residues 136 through 235 of human SLP-76 (8). (C) 
SLP-76 mRNA expression. Northern blot analysis of RNA prepared from the indicated cell lines 
using a [32P]-labeled cDNA probe encompassing the entire open reading frame of SLP-76 (top 
panel) or a p-actin probe (bottom panel). (D) Transcriptional activation of the 11-2 promoter. The 
indicated cell lines were transiently transfected with an IL-24uciferase reporter plasmid (26), and 
20 hours later were stimulated for 6 hours in tissue culture medium alone (white bars) or with 50 
n g h l  PMA and immobilized monoclonal antiboy to  TCR (C305) (gray bars) or for 8.5 hours with 
an equal number of Raji B cells alone (lightly striped bars) or supplemented with 300 ng/ml SED 
(thickly striped bars). Cells were lysed and assayed for luciferase activity as previously described (9). 

anti-TCR(min) 0 2 5 10 20 0 2 5 10 20 

PMA (min) 10 10 EklLbUb 

Fig. 2. Effect of SLP-76 on TCR-mediated activation of the C 
Ras pathway. (A) Lysates were prepared from Jurkat or 114 a" 40a00 

cells following stimulation for the indicated time with s2 
anti-TCR (C305) or 50 ng/ml PMA (27). Total cell lysates $2 jOmO 

were probed by protein immunoblotting with anti-phospo- 2 $ - 
MAPK (New England Biolabs) (top), which detects phos- 
pho-Erk2 (lower band) and phospho-Erkl (faint, upper "% 1- 

band). Lysates were also probed with anti-Erk2 (bottom). 
The slower migrating band representing activated ErkZ is 0 

indicated by an arrow. (B) The indicated cells were stimu- e"' $ 
lated with anti-TCR (C305) for 10 min (lanes 2,4, and 6) or 

9 
,\b- ,." 

left unstimulated (lanes 1, 3, and 5), and total cell lysates 
were probed with anti-phosphoMAPK, as in (A). (C) The indicated cells were transiently transfected 
with an AP-1-luciferase reporter plasmid (28) and 20 hours later were stimulated for 6 hours and 
assayed for luciferase activity, as in Fig. 10. stimulation was with medium alone (white bars), with 
immobilized C305 mAb to TCR (gray bars), or with 50 ng/ml PMA (cross-hatched bars). 
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vate Ras and calcium flux, respectively-was 
unaffected (Fig. 4C). The impairment of 
TCR-mediated NFAT activation was more 
profound than that seen with AP-1, probably 
reflecting partial inhibition of both the Ras 
and the calcium pathways. Notably, overex- 
pression of activated Ras (14) in SLP-76- 
deficient cells did not restore TCR respon- 
siveness (Fig. 4D), indicating that the defect 

Fig. 3. Effect of SLP-76 on TCR- A 
induced tyrosine phosphorylation. 
Lysates were prepared as in Fig. 2, 
following stimulation with anti-TCR 
(C305) for 2 min, where indicated anti-TCR: 
[or 10 min for the third panel in 
(B)]. (A) Total lysates were probed 
by protein immunoblotting with 104 - 
4C10 mAB to phosphotyrosine (Up- 82 - 
state Biotechnology). The arrow at 
right indicates the migration of SLP- 
76. (6) Cell lysates were immuno- 
precipitated with antibodies for - 
Vav, ZAP-70. Itk, or IAT (29). Im- 
mune complexes were resolved on 
SDS-PAGE and blorted with anti- 
phosphotyrosine as in (A). (C) Total 33.4 - 
lysates were immunoprecipitated 28.3 - 
with antibodies to PLC-71 (UBI). 
Immune complexes were 
resolved on SDS-PAGE and 
blotted with anti-phospho- 
tyrosine (top) or anti-PLC- 
y l  (bottom). (D) Lysates 
were prepared and immu- 
noprecipitated as above, 
except that Brij97 deter- 
gent was substituted for 
NP-40. Anti-PLC-yl or an- 
ti-CRB2 (Santa C m )  im- 
mune complexes were re- 
solved on SDS-PACE and 
blotted with anti-LAT. 

of these cells is not confined to events leading 
to Ras activation. Similarly, overexpression 
of an activated, calcium-independent form of 
calcineurin (19), the major target of the cal- 
cium pathway, did not restore TCR respon- 
siveness. Thus, SLP-76 is required, proximal- 
ly to the TCR, to achieve functionally suffi- 
cient activation of both the Ras and the cal- 
cium pathways. 

Itk - .  -_I 

Blot: anti-phospho-tyr 

IP: anti-PLC-y 

Blottina ab 

anti-phospho-tyr 

Blot: anti-LAT 

We show a requirement for SLP-76 to 
mediate TCR signaling and define SLP-76- 
dependent signaling events. SLP-76 is prob- 
ably required to increase the strength or du- 
ration of TCR signaling through both the Ras 
and calcium pathways to above the threshold 
required for a biological response. Consistent 
with this conclusion are independent obser- 
vations that SLP-76-deficient mice have a 
thymic developmental arrest at a checkpoint 
that requires pre-TCR signal transduction 
(20). 

The specific signaling events that were 
dependent on SLP-76 are also thought to 
involve LAT. LAT forms TCR-inducible 
complexes with GRB2 and PLC-y1 (5, 6), 
thereby linking to the Ras and calcium path- 
ways, and also associates with SLP-76, 
though this interaction may not be direct (6, 
8). LAT was inducibly tyrosine phosphoryl- 
ated in J14; nonetheless, neither PLC-71 nor 
Ras activation resulted. To explain these ob- 
servations, we suggest that SLP-76 may par- 
ticipate in the formation of a multimolecular 
signaling complex, nucleated by LAT, and 
may facilitate signaling events within this 
complex. Any of a number of SLP-76-asso- 
ciated proteins (8, 9, 11, 21) may be recruited 
to the signaling complex by SLP-76. Vav, a 
hematopoietically expressed member of the 
Dbl family of guanine nucleotide exchange 
factors (22), can cooperate with SLP-76 to 
augment TCR signaling (9); furthermore, 
Vav-deficient thymocytes, like 514, have de- 
fective TCR-induced calcium flux and CD69 
expression (23). Thus, SLP-76 may facilitate 
transmission of a Vav-mediated signal re- 
quired for optimal TCR-dependent activation 
of Ras and calcium flux. Another possibility 

Fig. 4. Impaired inositol phosphate and ras path- A ', B -  7 
way in SLP-76-deficient cells. (A) Jurkat T cells - 0 yW# 

4 (squares), the SLP-76-deficient clone 114-v-29 
z i 
-my 

a (diamonds), and the SLP-76-reconstituted clone v, so00 .- 5 i 
J14-76-11 (circles) were metabolically labeled with c- 0 .  - m .  
[3H]myo-inositol, stimulated with anti-TCR in the LSE o Eg - 
presence of LiCl for the indicated time, and total (0 

0 accumulation of inositol phosphates was mea- - c - lo00 a, 

sured as described (30). (6) jurkat T cells, the 4 

SLP-76-deficient clones 114 and Jl4-v-26, and the - C .  
J 1 4-V-26 

I-" 0 - - 
SLP-76-reconstituted clone 114-76-18 were load- I I 

50 100 160 200 
ed with the fluorescent calcium indicator dye Time (rnln) anti-TCR Indo-1 (Molecular Probes) and stimulated with -rime (-1 
anti-TCR (C305), and free calcium concentration was calculated from the ratio 
of fluorescence at 400 and 500 nm wavelength, as described (37). (C) The C D 
indicated cells were transiently transfected with an NFAT-luciferase reporter 3woa m 
plasmid (26), and 20 hours later were stimulated for 6 hours and assayed for az 
luciferase activity as in Fig. ID. Stimulation was with medium alone (white z5 
bars), immobilized anti-TCR mAb (C30S) (gray bars), or 50 ng/ml PMA and 1 E moo 
pM ionomycin (cross-hatched ban). (D) The SLP-76-deficient cell J14-v-29 
was transiently transfected with an NFAT-luciferase reporter plasmid as in (C). 2 2 
along with a plasmid encoding constitutively active forms of Ras (v-HA-ras) or z g  l m a  
calcineurin (ACaM-Al), as indicated. Cells were stimulated for 6 houn with 50 zg 

::L I+ 
!sm 

ng/rnl PMA (horizontal stripes). 1 pM ionomycin (diagonal stripes), or immo- 
bilized anti-TCR (gray bars) and were assayed for luciferase activity as in Fig. o o 
ID. The constitutive activity of v-HA-ras is confirmed by its ability to +rasV12 +ACaM-AI 
synergize with ionomycin, while the constitutive activity of ACaM-A1 is + - 
confirmed by its synergy with PMA. J 1 4-v-29 
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is that SLP-76 may recruit a PTK to the 
complex to mediate phosphorylation of PLC- 
y 1. Our results provide a basis for under- 
standing the biochemical coupling of SLP-76 
to specific signaling events. 
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Requirement for the 
Leukocyte-Specific Adapter 
Protein SLP-76 for Normal 

T Cell Development 
James L. Clements, Baoli Yang, Susan E. Ross-Barta, 

Steve L. Eliason, Ronald F. Hrstka, Roger A. Williamson, 
Gary A. Koretzky* 

The leukocyte-specific adapter molecule SLP-76 (Src homology 2 domain- 
containing leukocyte protein of 76 kilodaltons) is rapidly phosphorylated on 
tyrosine residues after receptor ligation in  several hematopoietically derived 
cell types. Mice made deficient for SLP-76 expression contained no peripheral 
T cells as a result of an early block in  thymopoiesis. Macrophage and natural 
killer cell compartments were intact in  SLP-76-deficient mice, despite SLP-76 
expression in  these lineages in wild-type mice. Thus, the SLP-76 adapter protein 
is required for normal thymocyte development and plays a crucial role in  
translating signals mediated by pre-T cell receptors into distal biochemical 
events. 

Activation of cytoplasmic tyrosine kinase ac- 
tivity is required for T cell receptor (TCR)- 
dependent lymphocyte activation (1). Adapt- 
er proteins serve as substrates for these ki- 
nases and as such may function to couple the 
TCR with downstream signaling events (2- 
6 ) .  SLP-76 is a hematopoietic cell-specific 
adapter protein that is phosphorylated rapidly 
on NH,-terminal tyrosine residues after TCR 
ligation (3), providing a binding site for the 
Src homology 2 (SH2) domain of Vav (7). 
SLP-76 also contains a central proline-rich 
region that associates constitutively with the 
SH3 domains of Grb2 (8). In addition, SLP- 
76 has a COOH-terminal SH2 domain that 
inducibly associates with SLAP-130 (SLP- 
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76-associated phosphoprotein of 130 kD) 
and an unidentified 62-kD tyrosine phospho- 
protein (5, 8, 9). The ability of SLP-76 to 
augment TCR-dependent nuclear factor of 
activated T cells (NFAT) activation when 
transiently overexpressed in a T cell line is 
dependent on the presence of each of these 
domains, suggesting that the association be- 
tween SLP-76 and at least a subset of these 
molecules is required for optimal function 
(10). 

In mice, SLP-76 expression is restricted to T 
lymphocytes, macrophages, and natural killer 
(NK) cells (11). SLP-76 is developmentally 
regulated during thymopoiesis, with highest ex- 
pression found at stages of development that 
coincide with pre-TCR-dependent selection 
and maturation from a CD4+CDgt phenotype 
to a CD4+ or CD8+ thyrnocyte (11). To define 
the role of SLP-76 in murine T cell develop- 
ment and function, we generated an SLP-76- 
deficient mouse strain through targeted disrup- 
tion of the SLP-76 genomic locus (12) (Fig. 1). 
About 360 base pairs (bp) of the SLP-76 
genomic locus, including 145 bp of the first 
exon containing the translational start site, were 
replaced with a neomycin resistance cassette in 
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