Complete Genome Sequence
of Treponema pallidum, the
Syphilis Spirochete

Claire M. Fraser,* Steven ). Norris, George M. Weinstock,
Owen White, Granger G. Sutton, Robert Dodson,
Michelle Gwinn, Erin K. Hickey, Rebecca Clayton,

Karen A. Ketchum, Erica Sodergren, John M. Hardham,
Michael P. McLeod, Steven Salzberg, Jeremy Peterson,
Hanif Khalak, Delwood Richardson, Jerrilyn K. Howell,
Monjula Chidambaram, Teresa Utterback, Lisa McDonald,
Patricia Artiach, Cheryl Bowman, Matthew D. Cotton,
Claire Fujii, Stacey Garland, Bonnie Hatch, Kurt Horst,
Kevin Roberts, Mina Sandusky, Janice Weidman,
Hamilton O. Smith, J. Craig Venter

The complete genome sequence of Treponema pallidum was determined and
shown to be 1,138,006 base pairs containing 1041 predicted coding sequences
(open reading frames). Systems for DNA replication, transcription, translation,
and repair are intact, but catabolic and biosynthetic activities are minimized.
The number of identifiable transporters is small, and no phosphoenolpyruvate:
phosphotransferase carbohydrate transporters were found. Potential virulence
factors include a family of 12 potential membrane proteins and several putative
hemolysins. Comparison of the T. pallidum genome sequence with that of
another pathogenic spirochete, Borrelia burgdorferi, the agent of Lyme disease,
identified unique and common genes and substantiates the considerable di-
versity observed among pathogenic spirochetes.

Venereal syphilis was first reported in Europe
in the late 1400s (1), coincident with the
return of Columbus from the New World.
The disease quickly reached epidemic pro-
portions in Europe and spread across the
world during the early 16th century with the
age of exploration. Syphilis was ubiquitous
by the 19th century and has been called the
acquired immune deficiency syndrome of
that era (2). Syphilis is characterized by mul-
tiple clinical stages and long periods of latent,
asymptomatic infection. The primary infec-
tion is localized, but organisms rapidly dis-
seminate and cause manifestations through-
out the body, including the cardiovascular
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and nervous systems (3). Although effective
therapies have been available since the intro-
duction of penicillin in the mid-20th century,
syphilis remains an important global health
problem. .

Treponema pallidum is the causative
agent of syphilis. It is a spirochete, a helical
to sinusoidal bacterium with outer and cyto-
plasmic membranes, a thin peptidoglycan
layer, and flagella that lie in the periplasmic
space and extend from both ends toward the
middle of the organism. Recent pulsed-field
gel electrophoresis studies (4) have shown
that 7. pallidum contains a circular chromo-
some of about 1000 kilobase pairs, making it
one of the smallest prokaryotic genomes. De-
spite its importance as an infectious agent,
relatively little is known about 7. pallidum in
comparison with other bacterial pathogens
(5). The organism is an obligate human par-
asite that cannot be cultured continuously in
vitro (6). Mechanisms of T. pallidum patho-
genesis are poorly understood. No known
virulence factors have been identified, and
the outer membrane is mostly lipid with a
paucity of proteins (7). Consequently, exist-
ing diagnostic tests for syphilis are subopti-
mal, and no vaccine against 7. pallidum is
available.

Spirochetes represent a phylogenetically
ancient and distinct bacterial group. Both T.

pallidum and Borrelia burgdorferi, the caus-
ative agent of Lyme disease, are similar in
having relatively small genomes and surviv-
ing only in association with a host. However,
they are not closely related and probably
evolved independently from a more complex
ancestor by loss of unnecessary genes and
acquisition of new functions that promoted
survival in the host environment. Comparison
of the T. pallidum and B. burgdorferi ge-
nomes (&) allows assessment of biological
diversity within this group of bacteria.

Genome analysis. The genome of T pal-
lidum subsp. pallidum (Nichols) was se-
quenced by the whole genome random se-
quencing method as described (8-70). The T.
pallidum genome is a circular chromosome of
1,138,006 base pairs with an average G + C
content of 52.8% (Figs. 1 and 2). There are a
total of 1041 predicted open reading frames
(ORFs), with an average size of 1023 bp,
representing 92.9% of total genomic DNA.
Predicted biological roles were assigned to
577 ORFs (55%) by the classification scheme
adopted from Riley (/1); 177 ORFs (17%)
match hypothetical proteins from other spe-
cies, and 287 ORFs (28%) have no database
match and presumably represent novel genes
(Fig. 1 and Table 1). Ninety T. pallidum
ORFs of unknown function match chromo-
some-encoded proteins in B. burgdorferi (8);
however, no T. pallidum ORFs match B.
burgdorferi plasmid-encoded proteins, sug-
gesting that the plasmid proteins may be
unique to Borrelia species (§). The average
size of the predicted proteins in 7. pallidum is
37,771 daltons, ranging from 3235 to
172,869 daltons, and the mean isoelectric
point for all predicted proteins is 8.1, ranging
from 3.9 to 12.3, values similar to those
observed in other bacterial species (8, 9).

Forty-two paralogous gene families con-
taining a total of 129 ORFs (12%) were
identified in 7. pallidum (Fig. 1). Fifteen
families contain 44 genes that have no as-
signed biological role. Thirty families have
only two members. The largest family, with
14 members, consists of proteins with aden-
osine triphosphate (ATP)-binding cassettes
in ABC transport systems. Within 13 gene
families are 16 clusters of adjacent genes that
may represent duplications in the 7. pallidum
genome.

All 61 triplet codons are used in T. palli-
dum. There is a bias for G or C in the third
codon position in 7. pallidum, in contrast to
an A or T bias in this position in B. burgdor-
feri. This observation is consistent with the G
+ C content in the 7. pallidum genome being
almost twice that in the B. burgdorferi ge-
nome. The disparate G + C content between
the spirochete genomes creates a bias in over-
all codon usage, resulting in a difference in
amino acid composition in the predicted cod-
ing sequences.
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Origin of replication. Two criteria were
used to identify a replication origin in 7.
pallidum: the co-localization of genes (dnad,
dnaN, recF, and gyrA) often found near the
origin in prokaryotic genomes and GC skew
(12) (Fig. 2). On the basis of these results, we
designated base pair 1 of the T. pallidum ge-
nome in an intergenic region of the chromo-
some that is located within the putative origin
of replication.

Sixty-four percent of the coding se-
quences in the T. pallidum genome are
aligned in the direction of replication, with
the point of transcriptional divergence lo-
cated near the putative origin between clpP
and dnad (Figs. 1 and 2). A number of
codons occur in coding sequences aligned
in the direction of replication at significant-
ly higher frequencies than expected (P <
5.3¢727), including TTG (Leu), GCG (Ala),
CGT (Arg), GTG (Val), and TGT (Cys).
Codons that are overrepresented are also
found in the most highly skewed oligomers
(GGAGCGTG, TGTGTGTG, GTGTGTGC,
TTTTTTGT, and GGTGTGTG).

Codon adaptation index (CAI), which is
designed to be a relative measure of transla-
tional efficiency (73), was computed for T.
pallidum with the codon frequencies from the
ribosomal proteins, the translation elongation
factors, and glyceraldehyde-3-phosphate de-
hydrogenase. Proteins with a high CAI are
presumably highly expressed in exponential
growth (13). The distribution of CAI scores
in T. pallidum ORFs (13) exhibits a strand-
dependent switch in magnitude around the
origin of replication (Fig. 2). In both T. pal-
lidum and B. burgdorferi, there is a marked
difference in CAI values (high versus low)
for genes on opposite strands of the chromo-
some, with genes transcribed in the direction
of replication exhibiting a high CAL

Transcription and translation. Trepo-
nema pallidum contains a basic set of genes
for transcription and translation that includes
homologs to the a, B, and B’ subunits of the
core RNA polymerase, five sigma factors
(o4, 028, o*, 034, and ¢79), and five genes
that encode proteins involved in transcript
elongation and termination (nusd, nusB,
nusG, gred, and rho). Treponema pallidum is
missing both a recognizable ¢3® (rpoS),
which is the major sigma factor in stationary

- phase activated in response to oxidative and

376

osmotic stress, and a 32, which is involved
in transcription of heat shock proteins.
Forty-four tRNA species, organized into
eight clusters containing 25 genes plus 19
single genes, were identified (Figs. 1 and 2).
Two ribosomal RNA (rRNA) operons are
present in the genome. Their organization is
the same as that commonly found in eubac-
teria (165-tRNA-235-58) (/4), in contrast
with the unusual arrangement seen in B.
burgdorferi (8, 15). Both T. pallidum rRNA
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operons are transcribed in the direction of
replication.

All tRNA synthetase genes were identi-
fied with the exception of glutaminyl-tRNA
synthetase, similar to B. burgdorferi (8). It is
likely that glutamyl-tRNA synthetase amino-
acylates tRNAC™ with glutamate followed by
transamidation by GIu-tRNA amidotrans-
ferase (/6). Two distinct lysyl-tRNA syn-
thetase (LysS) species are present in T. pal-
lidum, a class I type most similar to those in
euryarchaea and B. burgdorferi (17) and a
class II type most similar to those in eubac-
teria and eukaryotes. The class II LysS in T.
pallidum represents a COOH-terminal frag-
ment of Escherichia coli LysS. A region near
the NH,-terminus of LysS binds the antico-
don of the tRNA and is crucial for its activity
(18). Thus, it is likely that the class II LysS is
nonfunctional and may be in the process of
being lost from the genome.

Replication, repair, recombination, and
restriction-modification systems. The com-
plement of genes for DNA replication in T.
pallidum is similar to that in-other minimal
genomes such as Mycoplasma genitalium and
B. burgdorferi. Orthologs for the «, B, &, v,
and 7 subunits of E. coli DNA polymerase I1I
are present. Treponema pallidum has ho-
mologs of one type I topoisomerase (topA4)
and one type II topoisomerase (gyr4B), but
unlike B. burgdorferi, it is missing topoisom-
erase IV, which is involved in chromosome
segregation. However, chromosome segrega-
tion in 7. pallidum may proceed by an alter-
native mechanism that involves the binding
of hemimethylated DNA to the cytoplasmic
membrane. This idea is supported by the
presence of DNA adenine methyltransferase
(dam) in T. pallidum but not in B. burgdorferi
(19).

DNA repair in T. pallidum includes the
major known pathways of uvr excision re-
pair, mutL/mutS mismatch repair, mutY, and
dat. The T. pallidum genome encodes ho-
mologs of the recF pathway of recombination
(recFGJNR) but lacks homologs to sbcB
(exol) as well as recB, recC, and recD. Thus,
homologous recombination resembles the
recF pathway of E. coli. The converse is true
in B. burgdorferi, where there are homologs
of recBCD but not the recF pathway genes
(8). Treponema pallidum contains an A- or
G-specific adenine glycosylase (mutY), rec-
ognizes GA mismatches in duplex DNA, and
excises adenine. No enzyme with similar ac-
tivity has been identified in either M. geni-
talium or B. burgdorferi. This difference
may, in part, explain the lower G + C content
of the B. burgdorferi and M. genitalium ge-
nomes as compared with 7. pallidum. No
recognizable genes encoding restriction or
modification enzymes were found.

Biosynthetic pathways. Treponema pal-
lidum is an obligate parasite of humans. Con-

sistent with this property, previous physio-
logic studies have shown that it has limited
biosynthetic capabilities and requires multi-
ple nutrients from the host (20) (Fig. 3). The
T. pallidum genome encodes a pathway for
the conversion of phosphoenolpyruvate or
pyruvate through oxaloacetate to aspartate (at
the expense of glutamate), in accordance with
the previous observation that most of the
[**C]glucose incorporated into amino acids
was in the form of aspartate (21). Predicted
pathways for the interconversion of aspartate
and glutamine to glutamate, aspartate to as-
paragine, glutamate to proline, and serine to .
glycine are also present. Treponema pallidum
is unable to synthesize enzyme co-factors,
fatty acids, and nucleotides de novo, similar
to M. genitalium and B. burgdorferi. Deoxy-
ribonucleotides can be obtained by reduction
of ribonucleoside diphosphates through the
action of ribonucleotide diphosphate reduc-
tase and thioredoxin reductase.

Transport. An organism such as 7. pal-
lidum, with limited biosynthetic capabilities,
must have a repertoire of transport proteins
with broad substrate specificity to obtain the
necessary nutrients from the environment.
The T. pallidum genome contains 57 ORFs
(5% of the total) that encode 18 distinct
transporters with predicted specificity for
amino acids, carbohydrates, and cations (Fig.
3 and Table 1). For the most part, these
transport systems are of similar specificity to
those found in M. genitalium and B. burgdor-
feri (8); however, several important differ-
ences are seen.

Treponema pallidum has a broad spec-
trum of amino acid transporters, although
these transporters are different from those in
B. burgdorferi. For example, a transporter for
glutamate or aspartate in 7. pallidum is most
similar to mammalian glutamate transporters.
There are no phosphoenolpyruvate:phospho-
transferase (PTS) systems in T. pallidum for
the import of carbohydrates, in contrast to
other bacterial species whose genome se-
quences have been determined (8, 9). Ge-
nome analysis predicts that 7. pallidum
has three ATP-binding cassette transporters
with specificity for galactose (mgiBAC) (22,
23), ribose (rbsAC), and multiple sugars
(y400RS), respectively; however, these three
transporters may display a broader substrate
specificity. In E. coli, the mgl transporter
displays affinity not only for galactose but
also for glucose (24), and its expression is
up-regulated in glucose-limiting conditions
but repressed at high glucose concentrations
(24). Treponema pallidum may also require
an environment with limiting glucose con-
centrations for maximal expression of this
transporter. Treponema pallidum has no rec-
ognizable inorganic phosphate (P,) uptake
system, unlike other bacteria  studied by
whole-genome analysis to date; therefore, up-
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take of glycerol-3-phosphate through the
multiple sugar transporter may represent the
primary means whereby 7. pallidum obtains
P, (Fig. 3).

Treponema pallidum contains an ATP-
binding cassette transporter with specificity
for thiamine. Both thiamine and thiamine
pyrophosphate (TPP) are substrates for the
thiamine transporter in E. coli (25). This find-
ing is of interest because 7. denticola, T.
vincentii, and Leptospira species require TPP
for growth in vitro (26), which suggests that
T. pallidum may also exhibit a growth de-
pendency on TPP. The only recognizable
TPP-dependent enzyme present in 7. palli-
dum is transketolase, which creates a link
between the pentose phosphate pathway and
glycolysis.

Energy metabolism. The complement of
transport proteins in 7. pallidum suggests that
it may use several carbohydrates as energy
sources, including glucose, galactose, mal-

RESEARCH ARTICLES

tose, and glycerol. Experimental evidence has
demonstrated that only glucose, mannose,
and maltose support the multiplication of 7.
pallidum in a tissue culture system (27). It is
not known whether 7. pallidum can use ami-
no acids as a source of carbon and energy;
however, the lack of necessary catabolic and
anabolic pathway genes suggests that it
would not be able to use such alternative
compounds.

Metabolic pathway analysis reveals that
genes encoding all of the enzymes of the
glycolytic pathway are present in T. pallidum,
including hexokinase, which phosphorylates
glucose and other hexose sugars (Fig. 3).
Both M. genitalium and B. burgdorferi lack
hexokinase; however, in these organisms,
phosphorylation of hexoses is an integral part
of the PTS uptake mechanism. Instead of the
typical eubacterial phosphofructokinase and
pyruvate kinase, 7. pallidum contains ho-
mologs of these enzymes that use pyro-

cations

carnitine P-type ATPase

K-

phosphate. Similar inorganic pyrophosphate
(PP,))-dependent enzymes have been de-
scribed in some bacteria, protists, protozoa,
and plants (28). None of the genes encoding
components of the tricarboxylic acid cycle or
oxidative phosphorylation were identified,
contrary to previous reports of the presence
of cytochromes, flavoproteins, and some of
the tricarboxylic acid cycle enzymes (20, 29);
these may have represented contaminating
rabbit components. Reducing power is prob-
ably generated through the oxidative branch
of the pentose phosphate pathway. This sim-
plified metabolic strategy is similar to that
seen in both M. genitalium (9) and B. burg-
dorferi (8).

Treponema pallidum, like B. burgdorferi,
lacks a respiratory electron transport chain;
therefore, ATP production must be accom-
plished by substrate-level phosphorylation.
As a result, membrane potential must be es-
tablished by the reverse reaction of the ATP
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Fig. 3. Solute transport and metabolic pathways in T. pallidum. A schematic
diagram of a T. pallidum cell providing an integrated view of the transporters
and the main components of the metabolism of this organism, as deduced
from the genes identified in the genome. Presumed transporter specificity is
indicated. Question marks indicate where particular uncertainties exist or
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Hk' ADP + P,

22 putative lipoproteins

expected activities were not found. r, ribo; d, deoxy; AMP, adenosine mono-
phosphate; CMP, cytosine monophosphate; NDP, nucleotide diphosphate;
NTP, nucleotide triphosphate; TMP, thymidine monophosphate; UMP, uri-
dine monophosphate; ADP, adenosine diphosphate; CoA, coenzyme A; UDP,
uridine diphosphate; PRPP, phosphoribosyl-pyrophosphate.
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synthase. In both spirochetes, the ATP- syn-
thase. is of the V,V, type, most similar to
those found in eukaryotic vacuoles and in
archaea (30). Treponema pallidum has two
V,V,-type ATP synthase operons, each con-
taining seven genes (Table 1). The gene order
in one operon (subunit E-ORF-subunit
A-subunit B—subunit D—subunit [-subunit K)
is identical to that seen in the ATP synthase
operon in B. burgdorferi (§). The second
operon in T pallidum contains ATP synthase
subunits A, B, D, E, F, I, and K. The differ-
ence in subunit gene composition between
these operons suggests that the ATP syn-
thases may have different functions in the
cell.

One clue as to the functional role for the
two ATP synthases is the presence of an
oxaloacetate decarboxylase transporter that
may be involved in extrusion of Na* from
the cell, creating a Na™ gradient (3/). Such a
gradient can be used to drive Na*-dependent
transporters similar to the amino acid trans-
porters that are found in T. pallidum. Alter-
natively, the Na™ gradient could be used to
synthesize ATP in the same manner as the
H* gradient is used by an F F -type ATP
synthase. Two ATP synthases have been
identified in Enterococcus hirae, with speci-
ficity for Na* and H™, respectively (32).

Cellular processes. Treponema pallidum
is microaerophilic and grows only at reduced
concentrations of molecular oxygen (33).
This most likely reflects a balance between
an oxygen requirement for energy production
and defects in protective mechanisms against
reactive oxygen intermediates. Unlike B.
burgdorferi, which is also microaerophilic, T.
pallidum apparently lacks genes encoding su-
peroxide dismutase, catalase, or peroxidase

tdA tdB

tprA

Fig. 4. Dendrogram of members of the tpr
protein family of T. pallidum. This unrooted
distance dendrogram was generated from a
multiple sequence alignment of the 12 T. pal-
lidum tpr paralogs described herein and Msp
sequences from three Treponema denticola

. strains (tdA, T. denticola OTK; tdB, T. denticola
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35405; tdC, T. denticola 33520) (42).
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activities that protect against oxygen toxicity.
NADH oxidase is the only enzyme identified
thus far that can-account for O, utilization by
T. pallidum.

Treponema pallidum contains a basic set
of heat shock proteins but lacks 032, which is
responsible for transcription of heat shock
genes in other bacteria. This lack is consistent
with previous reports that T. pallidum lacks a
detectable heat shock response. There is no
change in the amounts of GroEL or other
proteins at increased temperatures (34). At
least two heat shock proteins in 7. pallidum
(GroEL and DnaK) appear to be constitutive-
ly expressed at high levels, which may miti-
gate the need for a typical heat shock re-
sponse (35). However, the observed thermal
sensitivity of 7. pallidum (6) may reflect the
absence of a robust heat shock response in
this organism. It is of interest that B. burg-
dorferi, which also lacks a recognizable o2,
exhibits a heat shock response. The differen-
tial response of the two spirochetes to in-
creased temperatures suggests that a protein
or proteins of unknown biological func-
tion may be involved in this process in B.
burgdorferi.

Regulatory functions. Treponema palli-
dum contains a minimal set of regulatory
genes that encode two response-regulator
two-component systems and several puta-
tive transcriptional repressors of unknown
specificity.

Although T. pallidum does not have a
sugar-specific PTS system, it does contain a
homolog of enzyme I (ptsl), a phosphocarrier
protein HPr (ptsH), an HPr(Ser) kinase
(ptsK), and two ptsN genes, which suggests
that these proteins may function mainly as
regulators. Gram-positive bacteria have a
specific ATP-dependent protein kinase
(ptsK) that phosphorylates HPr on a serine
residue (36). HPr(Ser~P) and a DNA-bind-

miscellaneous

Number of Shared Clusters
b

flagellar proteins
ribosomal proteins
ATPase subunits

ribosomal
proteins

ing protein then interact to mediate repression
by binding specifically to DNA sequences,
catabolite responsive elements found in the
control regions of catabolite-sensitive oper-
ons (36). These proteins in 7. pallidum may
function in a manner similar to that observed
in Gram-positive bacteria.

Escherichia coli and other Gram-negative
organisms coordinate nitrogen and carbon
utilization so that mechanisms of carbon re-
pression do not block the uptake and use of
organic nitrogen sources. Nitrogen-carbon
utilization in E. coli is modulated by a regu-
latory protein, PtsN, that displays similarity
to the PTS enzymes ITA specific for fruc-
tose and mannitol (37). Biochemical data
suggest that PtsN does not phosphorylate car-
bohydrates but instead serves as a positive
regulator of organic nitrogen metabolism.
Under such conditions, phosphoenolpyruvate
(PEP)-dependent phosphorylation of PtsN
occurs through the transfer of a phosphate
group from PEP to enzyme I, then to a histi-
dine residue on HPr, and finally to PtsN (37).
The gene content of 7. pallidum suggests that
both ATP- and PEP-dependent protein phos-
phorylation of HPr may integrate intracellular
signals reflecting the metabolic state of the
cell. However, these hypotheses remain to be
demonstrated experimentally. These proteins
may play alternative regulatory roles in T.
pallidum as this organism displays limited
transport and metabolic capacities.

Motility and chemotaxis. Motility-asso-
ciated genes are highly conserved in both T.
pallidum and B. burgdorferi, consistent with
the importance of this activity in these highly
invasive spirochetes (23, 38). The 36 genes
encoding proteins involved in flagellar struc-
ture and function in 7. pallidum are most
similar to those in B. burgdorferi (8). They
differ only in the number of proteins in the
periplasmic flagellar filaments; 7. pallidum

cell division
miscellaneous

miscellaneous

ribosomal
proteins

flagellar.
proteins

’
T

2 4 6 8 10 12

A I

PR
Lo

14 16 18 20 22 24 26 28

Number of T. pallidum Genes in Cluster

Fig. 5. Gene clusters found in both the T. pallidum and B. burgdorferi genomes. Graph values
represent the number of T. pallidum gene clusters in which orthologous genes have the same

organization in B. burgdorferi.
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Fig. 1. Linear representation of the T. pallidum chromosome. The loca-
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has three core proteins (FlaB1, FlaB2, and
FlaB3), a sheath protein (FlaA), and two
uncharacterized proteins (39), and B. burg-
dorferi has a single core protein and sheath
protein, whereas most other bacteria have
only a core protein. Both spirochetes contain
two copies of the flagellar motor switch pro-
tein, FliG; however, the importance of this
gene duplication is not known. Most of the
flagellar genes in 7. pallidum are found in
four operons that contain between 2 and 16
genes, most similar to the arrangement seen
in B. burgdorferi. Treponema pallidum has
retained a o®® ortholog and class II and class
III motility promoters, whereas motility genes
in B. burgdorferi appear to be transcribed
through ¢7° initiation (8, 40). Treponema pal-
lidum contains 13 chemotaxis genes that in-
clude four methyl-accepting chemotaxis pro-
teins with putative specificity for amino acids
(aspartate, glutamate, and histidine) or carbohy-
drates (glucose, ribose, and galactose).

Membrane proteins and lipoproteins.
Freeze fracture studies (7) have shown that
the outer membrane of T. pallidum contains a
relatively small number of integral membrane
proteins, a feature that may permit the organ-
ism to evade the human immune response.
Two candidate outer membrane proteins have
been identified, but the cellular location and
function of these proteins are a subject of
some controversy (47). Although it is diffi-
cult to identify outer membrane proteins with
certainty, genome analysis of 7. pallidum
indicates the presence of only 22 putative
lipoproteins, as compared with 105 in B.
burgdorferi, consistent with results from ul-
trastructural studies.

Potential virulence factors. Treponema
pallidum contains a large family of duplicat-
ed genes (paralogs) (#prA-L) that encode pu-
tative membrane proteins that may function
as porins and adhesins (Figs. 2 and 4). This
hypothesis is based on pair-wise and multiple
sequence alignments of the 7. pallidum gene
family to a major outer sheath protein (Msp)
from 7. denticola that represents an abundant,
highly immunogenic, pore-forming adhesin
in the outér membrane (42). It is not yet
known whether the pr genes are expressed
individually or coordinately or to what extent
each gene is expressed. This gene family in 7.
pallidum is reminiscent of a 32-member
paralogous gene family encoding outer mem-
brane proteins in Helicobacter pylori (omp)
(9). The two gene families share features
besides possible porin and adhesin functions,
the most striking being that both have mem-
bers with regions of extensive sequence iden-
tity. However, in both organisms, the homol-
ogous regions do not always encompass the
entire gene, so that some regions are identi-
cal, but others are variable. As in the H.
pylori family, one of the T. pallidum genes
(tprA and L) contains a frameshift within a
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small dinucleotide repeat that might be cor-
rected by slipped-strand mispairing. Multiple
copies of the fpr genes may represent a mech-
anism for generation of antigenic variation in
T. pallidum as is found in other pathogenic
bacteria, including Neisseria . gonorrhoeae,
M. genitalium, relapsing fever borreliae, and
B. burgdorferi. Identification of the #pr fam-
ily of putative outer membrane proteins may
provide new targets for vaccine development.

Previous studies have indicated that T.
pallidum does not produce lipopolysaccha-
ride or potent exotoxins, although cytotoxic
activity against neuroblasts and other cell
types has been observed at extremely high
concentrations of the bacterium (43). Ge-
nome analysis has revealed five genes encod-
ing proteins similar to bacterial hemolysins.
These putative hemolysin orthologs also
share varying degrees of amino acid sequence
similarity with B. burgdorferi predicted pro-
teins (8). None of the predicted hemolysins
with similarity to 7. pallidum sequences have
been shown to be cytolytic in their purified
state, and it will be necessary to perform such
studies with the T. pallidum proteins before a
cytotoxic function can be assigned definitive-
ly. A B. burgdorferi protein with hemolytic
activity (BlyA) was described recently (44),
but orthologous sequences are not present in
T. pallidum.

Comparative genomics. Four hundred
seventy-six ORFs in T. pallidum (46%) have
orthologs in B. burgdorferi; 76% of these
ORFs have a predicted biological function.
More than 40% of the orthologous genes in T.
pallidum and B. burgdorferi are highly con-
served in other bacteria (8, 9) and are in-
volved in housekeeping functions such as
transcription, translation, DNA replication,
basic energy metabolism, flagellar structure
and function, cell division, and protein secre-
tion. Some of the genes of unknown function
that are conserved in the spirochetes but not
recognized in the other available genome se-
quences are likely to represent “spirochete-
specific” genes that contribute to the unusual
structural properties of these bacteria.

One hundred fifteen ORFs shared by T.
pallidum and B. burgdorferi encode proteins
of unknown biological function; and almost
50% of these appear to be unique to the
spirochete group. This set of proteins with a
limited phylogenetic distribution may include
important determinants of spirochete struc-
ture and physiology and may, for example, be
involved in the ability of both T. pallidum
and B. burgdorferi to infect humans and
cause chronic, disseminated disease.

Three hundred four of the ORFs shared by
the two spirochetes are located in gene clus-
ters with conserved gene order (Fig. 5). Sev-
eral conserved clusters contain ORFs encod-
ing ribosomal proteins, including the largest
cluster containing 27 ORFs, whereas other

important clusters encode proteins for the
flagella, adenosine triphosphatases (ATPases),
and cell division, as well as groups of pro-
teins that are not obviously related. Further
study of the arrangement of these clusters in
the two genomes may provide insight into
the evolution of the chromosomes of these
organisms.

Of the 572 T. pallidum ORFs (54% of
total) that are not shared with B. burgdorferi,
more than 80% are of unknown biological
function. This finding lends support to the
concept of diversity within a single group of
bacteria and underscores the fact that a con-
siderable amount of T. pallidum biology is
yet to be elucidated.

Conclusion. Treponema pallidum has
been a difficult organism to study experimen-
tally because of its absolute dependence on a
mammalian host for sustained growth and
viability. The genomic sequence of T. palli-
dum offers a wealth of basic information that
would be difficult, if not impossible, to obtain
by any other approach. A more complete
understanding of the biochemstry of this or-
ganism derived from genome analysis may
provide a foundation for the development of a
culture medium for T. pallidum, which opens
up the possibility of future genetic studies.
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