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The CO, Balance of 
Unproductive Aquatic 

Ecosystems 
Carlos M. Duarte* and Susana Agusti 

Community respiration ( R )  rates are scaled as the two-thirds power of the gross 
primary production ( P )  rates of aquatic ecosystems, indicating that the role of 
aquatic biota as carbon dioxide sources or sinks depends on its productivity. 
Unproductive aquatic ecosystems support a disproportionately higher respi- 
ration rate than that of productive aquatic ecosystems, tend t o  be heterotrophic 
(R > P) ,  and act as carbon dioxide sources. The average P required for aquatic 
ecosystems t o  become autotrophic (P  > R )  is over an order of magnitude 
greater for marshes than for the open sea. Although four-fifths of the upper 
ocean is expected t o  be net heterotrophic, this carbon demand can be balanced 
by the excess production over the remaining one-fifth of the ocean. 

Aquatic ecosystems cover 70% of Earth's sur- 
face (I) and contribute 45% of the global pri- 
ma17 production (2). Yet, the role of their biota 
in the global CO, budget remains a subject of 
debate (3-5). Many freshwater ecosystems act 
as CO, sources (6); in contrast, oceanic ecosys- 
tems are assumed to act as CO, sinks (7, 8). 
This assumption has been challenged by calcu- 
lations suggesting that the coastal ocean may be 
net heterotrophic (9) and by the finding that 
bacterial metabolism exceeds phytoplankton 
production in unproductive waters ( lo ) ,  which 
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make up >30% of the ocean. These conclu- 
sions are based on indirect calculations and 
controversial assumptions (3). Here. we ~0111- 
pare the gross piimay production (P)  and res- 
piration (R)  rates of aquatic comrnunities to 
elucidate whether the biota of aquatic ecosys- 
tems acts as net CO, sources ( R  > P) or sinks 
(R < P). We compiled data obtained over the 
past five decades from studies in which oxygen 
evolution was used as a surrogate for carbon 
fluxes (1 1). 

Community metabolism varied by over four 
orders of magnitude across aquatic ecosystems 
(Table 1). Marshes tended to be more produc- 
tive than other aquatic ecosystems, whereas 
open sea cornnullities showed the lowest pro- 
duction and respiration rates (Table 1). The 
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Table 1. Median and range of the gross primary production, community the gross primary production required to balance production and respira- 
respiration, and production to respiration ratio (PIR); the percentage of the tion (P at P = R) for the planktonic (Pl) and combined planktonic and 
observations where communities were net heterotrophic (R > P); the benthic (Pl + B) communities of aquatic ecosystems. The slope b for 
parameters (a, b, and the coefficient of determination, RZ) of the power marshes, uncorrected for net sulfate reduction, was recalculated to be 
equation R = a Pb, describing the scaling between primary production (P) 0.63 when this effect was accounted for (14). 
and respiration rate (R), both in grams of 0, per cubic meter per day; and 

Cross production Respiration R = a P b  P a t P =  R R > P  
system Type (g of 0, (g of Oz PIR (%I a (g of Oz N 

m-3 day-') m-3 day-') b RZ m-3 day-') 

Freshwater 
Lakes P l  1.38 (0.028-36.3) 0.82 (0.027-37.3) 1.14 (0.08-5.9) 38.3 
Rivers P l  + B 3.94 (0.016-36.6) 3.36 (0.12-42.0) 1.08 (0.006-1 1.5) 35.0 

Marine 
Coastal PI + B 3.78 (0.0004-69.5) 3.03 (0.001-20.7) 1.17 (0.03-34.3) 34.6 
Marshes PI + B 6.9 (3.7-16.3) 2.7 (2.0-12.6) 0.98 (0.09-2.9) 50 
Open sea PI 0.14 (0.0008-12.7) 0.084 (0.0012-2.29) 1.71 (0.05-45.7) 26 

Overall PI + B 3.94 (0.0004-69.5) 3.0 (0.001-42.0) 1.25 (0.006-45.7) 34.4 

central tendency was for gross production and 
community respiration rates to be similar, lead- 
ing to median PIR ratios close to or slightly 
greater than 1 (Table 1). Yet, the PIR ratio 
mged by over three orders of magnitude 
across systems (Fig. 1); 34% of the communi- 
ties [26 to 50%, depending on the systems 
(Table I)] were heterotrophic (R > P). Com- 
munities with high respiration rates tended to be 
associated with ecosystems with high rates of 
gross primary production (Fig. 2 and Table 1). 
The slope of the power equation describing the 
overall relation was < 1 .O [t test, probability @) 

age, 2.5-fold higher [analysis of covariance 
(ANCOVA), t test, p < 0.00011 when the 
benthic compartment of shallow systems (riv- 
ers, marshes, and coastal ecosystems) was con- 
sidered (12). The slope of the power relation- 
ship between R and P was consistently < 1 .O, 
implying that community respiration declined 
more slowly toward unproductive ecosystems 
than did gross primary production. Hence, the 
PIR ratio decreases as the gross primary pro- 
duction of the ecosystems decreases @ < 
0.0001; Fig. 3). Community respiration rates 
tend, therefore, to exceed gross primary produc- 

< 0.00011, but this slope was lowest for marsh- tion in unproductive aquatic ecosystems, 
es and the open sea and was highest for rivers whereas highly productive ecosystems tend to 
and coastal ecosystems (Table 1). Moreover, be autolmphic (Fig. 3). The gross primary pro- 
the community respiration supported for a giv- duction required for aquatic ecosystems to be- 
en gross primary production was, on aver- come net autotrophic averaged 1.17 g of 0, 

m-' day-' and was almost two orders of mag- 
nitude lower for open sea communities than for 
other aquatic ecosystems (t test, p < 0.00001; 
Table 1). 

Our results confirm the generality of earlier 
reports that the relation between community 
respiration rate and gross production is not lin- 
ear (13). Community respiration is scaled as the 
approximate two-thirds power of gross produc- 
tion, implying that unproductive aquatic eco- 
systems support a disproportionately higher res- 
piration rate than do productive ecosystems. 
The imbalance between respiration and produc- 
tion rates in unproductive ecosystems was 
greater when the planktonic and benthic com- 
partments were considered together, indicating 
that the benthic compartment of shallow sys- 
tems is, in general, net heterotrophic. Although 
the conversion of these results, based on oxy- 

P < R  P - R  P > R  P c R  P - R  P > R  P c R  P - R  P > R  

m-=I 10 

P c R  P - R  P > R  P c R  P - R  P > R  

Rtverr I 

Lakes 

20 
- 

IS 

10 

P c R  P - R  P > R  

M - " " " !  
8 own Sen I 

Pmduction 1 Respiration ratio 
Fig. 2. The relation between volumetric and 

Fig. 1. Frequency distribution of the ratio of gross primary production to community respiration in areal rates of community respiration rate and 
aquatic ecosystems. Open and black bars encompass the range of FIR ratios of autotrophic (P > R) and gross primary production in aquatic ecosystems 
heterotrophic (P C R) communities, respectively, and the gray bar encompasses the 95% confidence (0, lakes; m, rivers; 0, marshes; 0, coastal 
Limits for FIR values with balanced production and respiration [that is, P = I?; compare (74)]. systems; 0, open sea). 
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gen exchange, to carbon exchange involved 
some uncertainties, error analysis showed that 
the results were robust against them (14) and 
that the scaling between community respiration 
and gross production in marshes should be clos- 
er to the two-thirds power once net sulfate 
reduction is considered (15) (compare Table I ) .  

The observation that unproductive aquatic 
ecosystems tend to be heterotrophic implies 
that they must partially rely on alloctl~onous 
carbon subsidies. The primary production 
needed to drive aquatic ecosystems toward 
net autotrophic metabolism was highest for 
rivers and marshes (Table I), which must, 
therefore, rely more heavily on imported or- 
ganic carbon. Coastal ecosystems also re- 
ceive substantial inputs o f  organic carbon 
from land (9)  but require a somewhat lower 
gross primary production to become autotro- 
phic. The gross primary production needed to 
render open sea ecosystems autotrophic 
(0.035 g o f  0, m p 3  dayp1)  is only about 2% 
o f  that required in coastal ecosystems. 

Although it is obvious that freshwater and 
coastal ecosystems receive high inputs o f  alloc- 
thonous carbon (9, 15). the source o f  the alloc- 
thonous carbon subsidies supporting excess res- 
piration in the open, oligotrophic sea is not clear 
( I @ .  Lateral inputs to the ocean o f  organic 
carbon derived from land or coastal ecosystems 
are now believed to be important (1 7). In addi- 
tion, organic carbon supplied vertically, up- 
welled to surface waters, or deposited from the 
atmosphere may also be important. For in- 
stance, the atmosphere receives a high loading 
o f  volatile organic carbon compounds o f  natu- 
ral and anthropogenic sources (15, 18). which 
result in substantial wet and dry depositions o f  
organic carbon (19, 20). 

Our results show that the biota o f  unproduc- 
tive ecosystems tends to be net CO, sources, 
whereas the biota o f  highly productive ecosys- 
tems acts as a CO, sink. High aquatic produc- 
tion is thought to derive from high external 
inputs o f  inorganic nutrients to aquatic ecosys- 
tems, whereas the primary production o f  oligo- 
trophic ecosystems is controlled by recycling 
processes driven by heterotrophic organisms 

Heterohophic 

Lakes 

Gross primary production (g O2 m.3 d.' ) 

Fig. 3. Regression lines describing the relation 
between the ratio of gross primary production 
to respiration rate and the gross primary pro- 
duction of different aquatic ecosystems. 

(21). Relatively small allocthonous carbon in- 
puts should. therefore. suffice to drive the biota 
o f  oligotrophic aquatic ecosystems toward net 
heterotrophy, acting as CO, sources. W e  calcu- 
lated (22) that the planktonic conlmunities in 25 
o f  56 biogeochemical provinces in the ocean, 
which make up 80% o f  the ocean's surface, are 
expected to be heterotrophic (mean area- 
weighted PiR = 0.74). Yet ,  the average areal 
excess CO, incorporation by the autotrophic 
communities over the remaining one-fifth o f  
the ocean was estimated to be fivefold greater. 
on average. than the small net CO, release by 
the heterotrophic communities o f  unproductive 
provinces. leading to an overall balance be- 
tween production and consumption in the glob- 
al upper ocean. Hence, although many aquatic 
ecosystems are likely to be heterotrophic. 
aquatic biota can act as CO, sinks at the global 
scale because the aseal excess CO, incorpora- 
tion by the productive autotrophic communities 
is greater than the small net areal CO, release 
by the heterotrophic communities occupying 
unproductive aquatic ecosystems 
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